Citation: | SHEN Bin, YANG Jian, ZENG Xiangzhi, CUI Taiping. Massive MIMO Signal Detection Based on Interference Cancellation Assisted Sparsely Connected Neural Network[J]. Journal of Electronics & Information Technology, 2023, 45(1): 208-217. doi: 10.11999/JEIT211276 |
[1] |
RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
|
[2] |
李国权, 徐永海, 林金朝, 等. 基于深度学习的无线物理层关键技术研究综述[J]. 重庆邮电大学学报:自然科学版, 2020, 32(4): 503–510. doi: 10.3979/j.issn.1673-825X.2020.04.001
LI Guoquan, XU Yonghai, LIN Jinchao, et al. A survey of wireless physical layer key technology based on deep learning[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2020, 32(4): 503–510. doi: 10.3979/j.issn.1673-825X.2020.04.001
|
[3] |
SUN Yi, ZHENG Le, ZHU Pengcheng, et al. On optimality of local maximum-likelihood detectors in large-scale MIMO channels[J]. IEEE Transactions on Wireless Communications, 2016, 15(10): 7074–7088. doi: 10.1109/TWC.2016.2596721
|
[4] |
MOHAMMADKARIMI M, MEHRABI M, ARDAKANI M, et al. Deep learning-based sphere decoding[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4368–4378. doi: 10.1109/TWC.2019.2924220
|
[5] |
申滨, 赵书锋, 金纯. 基于迭代并行干扰消除的低复杂度大规模MIMO信号检测算法[J]. 电子与信息学报, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111
SHEN Bin, ZHAO Shufeng, and JIN Chun. Low complexity iterative parallel interference cancellation detection algorithms for massive MIMO systems[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111
|
[6] |
丁子哲, 张贤达. 基于串行干扰消除的V-BLAST检测[J]. 电子学报. 2007, 35(S1): 19–24.
DING Zizhe and ZHANG Xianda. V-BLAST detection based on successive interference cancellation[J]. Acta Electronica Sinica, 2007, 35(S1): 19–24.
|
[7] |
WANG Gang, WANG Dandan, and LI Daoben. An efficient ZF-SIC detection algorithm in MIMO CDMA system[C]. The 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003, Beijing, China, 2003: 1708–1711.
|
[8] |
LIU T H. Some results for the fast MMSE-SIC detection in spatially multiplexed MIMO systems[J]. IEEE Transactions on Wireless Communications, 2009, 8(11): 5443–5448. doi: 10.1109/TWC.2009.090196
|
[9] |
SEEBÖCK P, WALDSTEIN S M, KLIMSCHA S, et al. Unsupervised identification of disease marker candidates in retinal OCT imaging data[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 1037–1047. doi: 10.1109/TMI.2018.2877080
|
[10] |
UMA M, SNEHA V, SNEHA G, et al. Formation of SQL from natural language query using NLP[C]. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), Chennai, India, 2019: 1–5.
|
[11] |
BU Linkai and CHURCH T D. Perceptual speech processing and phonetic feature mapping for robust vowel recognition[J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(2): 105–114. doi: 10.1109/89.824695
|
[12] |
XIA Junjuan, HE Ke, XU Wei, et al. A MIMO detector with deep learning in the presence of correlated interference[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4492–4497. doi: 10.1109/TVT.2020.2972806
|
[13] |
SUN Jianyong, ZHANG Yiqing, XUE Jiang, et al. Learning to search for MIMO detection[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7571–7584. doi: 10.1109/TWC.2020.3012785
|
[14] |
HE Hengtao, WEN Chaokai, JIN Shi, et al. A model-driven deep learning network for MIMO detection[C]. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, USA, 2018: 584–588.
|
[15] |
LIAO Jieyu, ZHAO Junhui, GAO Feifei, et al. A model-driven deep learning method for massive MIMO detection[J]. IEEE Communications Letters, 2020, 24(8): 1724–1728. doi: 10.1109/LCOMM.2020.2989672
|
[16] |
TAN Xiaosi, XU Weihong, SUN Kai, et al. Improving massive MIMO message passing detectors with deep neural network[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1267–1280. doi: 10.1109/TVT.2019.2960763
|
[17] |
SAMUEL N, DISKIN T, and WIESEL A. Learning to detect[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2554–2564. doi: 10.1109/TSP.2019.2899805
|
[18] |
FENG Yuan, MA Yunsi, LI Zhengdai, et al. Low-complexity factor graph-based iterative detection for RRC-SEFDM signals[C]. 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018: 1–6.
|
[19] |
GAO Guili, DONG Chao, and NIU Kai. Sparsely connected neural network for massive MIMO detection[C]. 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 2018: 397–402.
|
[20] |
DONG Fangwei, XIAO Yue, XIAO Lixia, et al. MF-SIC detector for massive MIMO with QPSK modulation[C]. 2015 IEEE/CIC International Conference on Communications in China - Workshops (CIC/ICCC), Shenzhen, China, 2015: 137–141.
|
[21] |
TAKABE S, IMANISHI M, WADAYAMA T, et al. Trainable projected gradient detector for massive overloaded MIMO channels: Data-driven tuning approach[J]. IEEE Access, 2019, 7: 93326–93338. doi: 10.1109/access.2019.2927997
|
[22] |
ZHENG Peicong, ZENG Yuan, LIU Zhenrong, et al. Deep learning based trainable approximate message passing for massive MIMO detection[C]. 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
|
[23] |
SAMUEL N, DISKIN T, and WIESEL A. deep MIMO detection [C]. The 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 2017: 1–5.
|
[24] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
|
[25] |
HE Hengtao, WEN Chaokai, JIN Shi, et al. Model-driven deep learning for MIMO detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 1702–1715. doi: 10.1109/tsp.2020.2976585
|