Citation: | CUI Yijun, ZHANG Hu, YAN Chenggang, WANG Chenghua, LIU Weiqiang. Low-cost PUF Circuit Based on Sub-threshold Current Array[J]. Journal of Electronics & Information Technology, 2023, 45(1): 42-48. doi: 10.11999/JEIT211272 |
[1] |
SUH G E and DEVADAS S. Physical unclonable functions for device authentication and secret key generation[C]. The 44th Annual Design Automation Conference, San Diego, USA, 2007: 9–14.
|
[2] |
DELVAUX J, GU D W, SCHELLEKENS D, et al. Helper data algorithms for PUF-based key generation: Overview and analysis[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(6): 889–902. doi: 10.1109/TCAD.2014.2370531
|
[3] |
李刚, 汪鹏君, 张跃军, 等. 基于65 nm工艺的多端口可配置PUF电路设计[J]. 电子与信息学报, 2016, 38(6): 1541–1546. doi: 10.11999/JEIT150968
LI Gang, WANG Pengjun, ZHANG Yuejun, et al. Design of multi-port configurable PUF circuit based on 65 nm technology[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1541–1546. doi: 10.11999/JEIT150968
|
[4] |
李森森, 黄一才, 郁滨, 等. 基于PUF的低开销物联网安全通信方案[J]. 电子学报, 2019, 47(4): 812–817. doi: 10.3969/j.issn.0372-2112.2019.04.007
LI Sensen, HUANG Yicai, YU Bin, et al. A PUF-based low cost secure communication scheme for IoT[J]. Acta Electronica Sinica, 2019, 47(4): 812–817. doi: 10.3969/j.issn.0372-2112.2019.04.007
|
[5] |
LIANG Wei, XIE Songyou, ZHANG Dafang, et al. A mutual security authentication method for RFID-PUF circuit based on deep learning[J]. ACM Transactions on Internet Technology, 2022, 22(2): 34. doi: 10.1145/3426968
|
[6] |
刘伟强, 崔益军, 王成华. 一种低成本物理不可克隆函数结构的设计实现及其RFID应用[J]. 电子学报, 2016, 44(7): 1772–1776. doi: 10.3969/j.issn.0372-2112.2016.07.036
LIU Weiqiang, CUI Yijun, and WANG Chenghua. Design and implementation of a low-cost physical unclonable function and its application in RFID[J]. Acta Electronica Sinica, 2016, 44(7): 1772–1776. doi: 10.3969/j.issn.0372-2112.2016.07.036
|
[7] |
GU Chongyan, LIU Weiqiang, CUI Yijun, et al. A flip-flop based Arbiter Physical Unclonable Function (APUF) design with high entropy and uniqueness for FPGA implementation[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(4): 1853–1866. doi: 10.1109/TETC.2019.2935465
|
[8] |
SAHOO D P, MUKHOPADHYAY D, CHAKRABORTY R S, et al. A multiplexer-based arbiter PUF composition with enhanced reliability and security[J]. IEEE Transactions on Computers, 2018, 67(3): 403–417. doi: 10.1109/TC.2017.2749226
|
[9] |
CUI Yijun, WANG Chenghua, LIU Weiqiang, et al. Low-cost configurable ring oscillator PUF with improved uniqueness[C]. 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, Canada, 2016: 558–561.
|
[10] |
CAO Yuan, ZHANG Le, CHANG C H, et al. A low-power hybrid RO PUF with improved thermal stability for lightweight applications[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(7): 1143–1147. doi: 10.1109/TCAD.2015.2424955
|
[11] |
RAHMAN M T, RAHMAN F, FORTE D, et al. An aging-resistant RO-PUF for reliable key generation[J]. IEEE Transactions on Emerging Topics in Computing, 2016, 4(3): 335–348. doi: 10.1109/TETC.2015.2474741
|
[12] |
GU Chongyan, MURPHY J, and O’NEILL M. A unique and robust single slice FPGA identification generator[C]. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 2014: 1223–1226.
|
[13] |
SHIFMAN Y, MILLER A, KEREN O, et al. A method to improve reliability in a 65-nm SRAM PUF array[J]. IEEE Solid-State Circuits Letters, 2018, 1(6): 138–141. doi: 10.1109/LSSC.2018.2879216
|
[14] |
张跃军, 汪鹏君, 李刚, 等. 基于信号传输理论的Glitch物理不可克隆函数电路设计[J]. 电子与信息学报, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312
ZHANG Yuejun, WANG Pengjun, LI Gang, et al. Design of Glitch physical unclonable functions circuit based on signal transmission theory[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2391–2396. doi: 10.11999/JEIT151312
|
[15] |
ZHANG Jiliang and QU Gang. Physical unclonable function-based key sharing via machine learning for IoT security[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8): 7025–7033. doi: 10.1109/TIE.2019.2938462
|
[16] |
汪鹏君, 连佳娜, 陈博. 基于序列密码的强PUF抗机器学习攻击方法[J]. 电子与信息学报, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726
WANG Pengjun, LIAN Jia’na, and CHEN Bo. Sequence cipher based machine learning-attack resistance method for strong-PUF[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726
|
[17] |
XI Xiaodan, ZHUANG Haoyu, SUN Nan, et al. Strong subthreshold current array PUF with 265 challenge-response pairs resilient to machine learning attacks in 130nm CMOS[C]. 2017 Symposium on VLSI Circuits, Kyoto, Japan, 2017: C268–C269.
|
[18] |
ZHUANG Haoyu, XI Xiaodan, SUN Nan, et al. A strong subthreshold current array PUF resilient to machine learning attacks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(1): 135–144. doi: 10.1109/TCSI.2019.2945247
|
[19] |
LIU Jiahao, ZHU Yan, CHAN Chihang, et al. A 0.04% BER strong PUF with cell-bias-based CRPs filtering and background offset calibration[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(11): 3853–3865. doi: 10.1109/TCSI.2020.3008683
|
[20] |
CAO Yuan, LIU Chaoqun, and CHANG C H. A low power diode-clamped inverter-based strong physical unclonable function for robust and lightweight authentication[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2018, 65(11): 3864–3873. doi: 10.1109/TCSI.2018.2855061
|
[21] |
HE Zhangqing, WAN Meilin, DENG Jie, et al. A reliable strong PUF based on switched-capacitor circuit[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26(6): 1073–1083. doi: 10.1109/TVLSI.2018.2806041
|