Citation: | TANG Lun, WANG Zhiping, PU Hao, WU Zhuang, CHEN Qianbin. Research on Efficient Federated Learning Communication Mechanism Based on Adaptive Gradient Compression[J]. Journal of Electronics & Information Technology, 2023, 45(1): 227-234. doi: 10.11999/JEIT211262 |
[1] |
LI Tian, SAHU A K, TALWALKAR A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50–60. doi: 10.1109/MSP.2020.2975749
|
[2] |
LUO Siqi, CHEN Xu, WU Qiong, et al. HFEL: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6535–6548. doi: 10.1109/TWC.2020.3003744
|
[3] |
HUANG Liang, FENG Xu, FENG Anqi, et al. Distributed deep learning-based offloading for mobile edge computing networks[J]. Mobile Networks and Applications, 2022, 27: 1123–1130. doi: 10.1007/s11036-018-1177-x
|
[4] |
赵英, 王丽宝, 陈骏君, 等. 基于联邦学习的网络异常检测[J]. 北京化工大学学报:自然科学版, 2021, 48(2): 92–99. doi: 10.13543/j.bhxbzr.2021.02.012
ZHAO Ying, WANG Libao, CHEN Junjun, et al. Network anomaly detection based on federated learning[J]. Journal of Beijing University of Chemical Technology:Natural Science, 2021, 48(2): 92–99. doi: 10.13543/j.bhxbzr.2021.02.012
|
[5] |
周传鑫, 孙奕, 汪德刚, 等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021, 7(5): 77–92. doi: 10.11959/j.issn.2096-109x.2021056
ZHOU Chuanxin, SUN Yi, WANG Degang, et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021, 7(5): 77–92. doi: 10.11959/j.issn.2096-109x.2021056
|
[6] |
SHI Weisong, CAO Jie, ZHANG Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637–646. doi: 10.1109/JIOT.2016.2579198
|
[7] |
WANG Shiqiang, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1205–1221. doi: 10.1109/JSAC.2019.2904348
|
[8] |
ABESHU A and CHILAMKURTI N. Deep learning: The frontier for distributed attack detection in fog-to-things computing[J]. IEEE Communications Magazine, 2018, 56(2): 169–175. doi: 10.1109/MCOM.2018.1700332
|
[9] |
LIU Lumin, ZHANG Jun, SONG Shenghui, et al. Client-edge-cloud hierarchical federated learning[C]. ICC 2020 - 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020: 1–6.
|
[10] |
SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from Non-i. i. d. data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3400–3413. doi: 10.1109/TNNLS.2019.2944481
|
[11] |
SUN Jun, CHEN Tianyi, GIANNAKIS G B, et al. Lazily aggregated quantized gradient innovation for communication-efficient federated learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2031–2044. doi: 10.1109/TPAMI.2020.3033286
|
[12] |
CHEN Tianyi, SUN Yuejiao, and YIN Wotao. Communication-adaptive stochastic gradient methods for distributed learning[J]. IEEE Transactions on Signal Processing, 2021, 69: 4637–4651. doi: 10.1109/TSP.2021.3099977
|
[13] |
LU Xiaofeng, LIAO Yuying, LIO P, et al. Privacy-preserving asynchronous federated learning mechanism for edge network computing[J]. IEEE Access, 2020, 8: 48970–48981. doi: 10.1109/ACCESS.2020.2978082
|
[14] |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2016: 1273–1282.
|