Citation: | GU Xiaofeng, LIU Yanhang, YU Zhiguo, ZHONG Xiaoyu, CHEN Xuan, SUN Yi, PAN Hongbing. An Analog Neuron Circuit for Spiking Convolutional Neural Networks Based on Flash Array[J]. Journal of Electronics & Information Technology, 2023, 45(1): 116-124. doi: 10.11999/JEIT211249 |
[1] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[2] |
MOONS B and VERHELST M. A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets[C]. 2016 IEEE Symposium on VLSI Circuits, Honolulu, USA, 2016: 1–2.
|
[3] |
CHIU C C, SAINATH T N, WU Yonghui, et al. State-of-the-art speech recognition with sequence-to-sequence models[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4774–4778.
|
[4] |
KANG J F, GAO B, HUANG P, et al. Oxide-based RRAM: Requirements and challenges of modeling and simulation[C]. 2015 IEEE International Electron Devices Meeting, Washington, USA, 2015: 5.4. 1–5.4. 4.
|
[5] |
TANG Tianqi, XIA Lixue, LI Boxun, et al. Binary convolutional neural network on RRAM[C]. The 2017 22nd Asia and South Pacific Design Automation Conference, Chiba, Japan, 2017: 782–787.
|
[6] |
CHUNG S W, KISHI T, PARK J W, et al. 4Gbit density STT-MRAM using perpendicular MTJ realized with compact cell structure[C]. 2016 IEEE International Electron Devices Meeting, San Francisco, USA, 2016: 27.1. 1–27.1. 4.
|
[7] |
BEZ R, CAMERLENGHI E, MODELLI A, et al. Introduction to flash memory[J]. Proceedings of the IEEE, 2003, 91(4): 489–502. doi: 10.1109/JPROC.2003.811702
|
[8] |
HAN Runze, HUANG Peng, XIANG Yachen, et al. A novel convolution computing paradigm based on NOR flash array with high computing speed and energy efficiency[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2019, 66(5): 1692–1703. doi: 10.1109/TCSI.2018.2885574
|
[9] |
GUO X, MERRIKH BAYAT F, BAVANDPOUR M, et al. Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 6.5. 1–6.5. 4.
|
[10] |
CHEN Paiyu, PENG Xiaochen, and YU Shimeng. NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures[C]. 2017 IEEE International Electron Devices Meeting, San Francisco, USA, 2017: 6.1. 1–6.1. 4.
|
[11] |
EMER J. Design efficient deep learning accelerator: Challenges and opportunities[C]. Kyoto, Japan, VLSI Short Course, 2017: 1–121.
|
[12] |
MALAVENA G, FILIPPI M, SPINELLI A S, et al. Unsupervised learning by spike-timing-dependent plasticity in a mainstream NOR flash memory array—Part I: Cell operation[J]. IEEE Transactions on Electron Devices, 2019, 66(11): 4727–4732. doi: 10.1109/TED.2019.2940602
|
[13] |
HUANG Xiaoyu, JONES E, ZHANG Siru, et al. An FPGA implementation of convolutional spiking neural networks for radioisotope identification[C]. 2021 IEEE International Symposium on Circuits and Systems, Daegu, Korea, 2021: 1–5.
|
[14] |
XIANG Yachen, HUANG Peng, HAN Runze, et al. Efficient and robust spike-driven deep convolutional neural networks based on NOR flash computing array[J] IEEE Transactions on Electron Devices, 2020, 67(6): 2329–2335.
|
[15] |
ZHOU Shibo, CHEN Ying, LI Xiaohua, et al. Deep SCNN-based real-time object detection for self-driving vehicles using LiDAR temporal data[J]. IEEE Access, 2020, 8: 76903–76912. doi: 10.1109/ACCESS.2020.2990416
|
[16] |
PARK J, KWON M W, KIM H, et al. Compact neuromorphic system with four-terminal Si-based synaptic devices for spiking neural networks[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2438–2444. doi: 10.1109/TED.2017.2685519
|
[17] |
SEO J, MIN K S, KIM D H, et al. A low power integrate and fire neuron circuit for spiking neural network[C]. 2020 International Conference on Electronics, Information, and Communication, Barcelona, Spain, 2020: 1–5.
|
[18] |
YAN Bonan, YANG Qing, CHEN Weihao, et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation[C]. 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019: T86–T87.
|