Citation: | HUANG Shan, ZHU Shixin, LI Jin. A Method for Constructing Ternary Linear Complementary Dual Codes[J]. Journal of Electronics & Information Technology, 2023, 45(1): 353-360. doi: 10.11999/JEIT211235 |
[1] |
MASSEY J L. Reversible codes[J]. Information and Control, 1964, 7(3): 369–380. doi: 10.1016/S0019-9958(64)90438-3
|
[2] |
MASSEY J L. Linear codes with complementary duals[J]. Discrete Mathematics, 1992, 106/107: 337–342. doi: 10.1016/0012-365X(92)90563-U
|
[3] |
BRINGER J, CARLET C, CHABANNE H, et al. Orthogonal direct sum masking[C]. The 8th IFIP International Workshop on Information Security Theory and Practice, Heraklion, Crete, Greece, 2014: 40–56.
|
[4] |
CARLET C and GUILLEY S. Complementary dual codes for counter-measures to side-channel attacks[M]. PINTO R, MALONEK P R, and VETTORI P. Coding Theory and Applications. Cham: Springer, 2015: 97–105.
|
[5] |
LI Chengju, DING Cunsheng, and LI Shuxing. LCD cyclic codes over finite fields[J]. IEEE Transactions on Information Theory, 2017, 63(7): 4344–4356. doi: 10.1109/TIT.2017.2672961
|
[6] |
LI Shuxing, LI Chengju, DING Cunsheng, et al. Two families of LCD BCH codes[J]. IEEE Transactions on Information Theory, 2017, 63(9): 5699–5717. doi: 10.1109/TIT.2017.2723363
|
[7] |
SOK L, SHI Minjia, and SOLÉ P. Constructions of optimal LCD codes over large finite fields[J]. Finite Fields and Their Applications, 2018, 50: 138–153. doi: 10.1016/j.ffa.2017.11.007
|
[8] |
LIU Zihui and WANG Jie. Further results on Euclidean and Hermitian linear complementary dual codes[J]. Finite Fields and Their Applications, 2019, 59: 104–133. doi: 10.1016/j.ffa.2019.05.005
|
[9] |
SHI Minjia, ÖZBUDAK F, XU Li, et al. LCD codes from tridiagonal Toeplitz matrices[J]. Finite Fields and Their Applications, 2021, 75: 101892. doi: 10.1016/j.ffa.2021.101892
|
[10] |
唐春明, 吴虹佳, 亓延峰. 有限域上的LCD码和LCP码[J]. 西华师范大学学报:自然科学版, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001
TANG Chunming, WU Hongjia, and QI Yanfeng. LCD codes and LCP codes over finite fields[J]. Journal of China West Normal University:Natural Sciences, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001
|
[11] |
金玲飞, 孙中华, 滕佳明. LCD MDS码的几类构造方法[J]. 中国科学:数学, 2021, 51(10): 1463–1484. doi: 10.1360/SSM-2020-0351
JIN Lingfei, SUN Zhonghua, and TENG Jiaming. Several constructions of LCD MDS codes[J]. Scientia Sinica Mathematica, 2021, 51(10): 1463–1484. doi: 10.1360/SSM-2020-0351
|
[12] |
LIU Xiusheng and LIU Hualu. LCD codes over finite chain rings[J]. Finite Fields and Their Applications, 2015, 34: 1–19. doi: 10.1016/j.ffa.2015.01.004
|
[13] |
SHI Minjia, HUANG Daitao, SOK L, et al. Double circulant LCD codes over
|
[14] |
BHOWMICK S, FOTUE-TABUE A, MARTÍNEZ-MORO E. Do non-free LCD codes over finite commutative Frobenius rings exist?[J]. Designs, Codes and Cryptography, 2020, 88(5): 825–840. doi: 10.1007/s10623-019-00713-x
|
[15] |
LIU Zihui and WU Xinwen. Notes on LCD codes over Frobenius rings[J]. IEEE Communications Letters, 2021, 25(2): 361–364. doi: 10.1109/LCOMM.2020.3029073
|
[16] |
CARLET C, MESNAGER S, TANG Chunming, et al. Linear codes over
|
[17] |
RAO Yi, LI Ruihu, LV Liangdong, et al. On binary LCD cyclic codes[J]. Procedia Computer Science, 2017, 107: 778–783. doi: 10.1016/j.procs.2017.03.166
|
[18] |
SENEVIRATNE P and MELCHER L. Binary and ternary LCD codes from projective spaces[J]. Discrete Mathematics, Algorithms and Applications, 2018, 10(6): 1850079. doi: 10.1142/S1793830918500799
|
[19] |
ZHOU Zhengchun, LI Xia, TANG Chunming, et al. Binary LCD codes and self-orthogonal codes from a generic construction[J]. IEEE Transactions on Information Theory, 2019, 65(1): 16–27. doi: 10.1109/TIT.2018.2823704
|
[20] |
CARLET C, MESNAGER S, TANG Chunming, et al. New characterization and parametrization of LCD codes[J]. IEEE Transactions on Information Theory, 2019, 65(1): 39–49. doi: 10.1109/TIT.2018.2829873
|
[21] |
GALINDO C, GEIL O, HERNANDO F, et al. New binary and ternary LCD codes[J]. IEEE Transactions on Information Theory, 2019, 65(2): 1008–1016. doi: 10.1109/TIT.2018.2834500
|
[22] |
LI Xia, CHENG Feng, TANG Chunming, et al. Some classes of LCD codes and self-orthogonal codes over finite fields[J]. Advances in Mathematics of Communications, 2019, 13(2): 267–280. doi: 10.3934/amc.2019018
|
[23] |
LIU Yang, LI Ruihu, FU Qiang, et al. Some binary BCH codes with length
|
[24] |
WU Yansheng and LEE Y. Binary LCD codes and self-orthogonal codes via simplicial complexes[J]. IEEE Communications Letters, 2020, 24(6): 1159–1162. doi: 10.1109/LCOMM.2020.2982381
|
[25] |
HUANG Xinmei, YUE Qin, WU Yansheng, et al. Binary primitive LCD BCH codes[J]. Designs, Codes and Cryptography, 2020, 88(12): 2453–2473. doi: 10.1007/s10623-020-00795-y
|
[26] |
LU Liangdong, LI Ruihu, FU Qiang, et al. Optimal ternary linear complementary dual codes[J]. arXiv: 2012.12093v2, 2020.
|
[27] |
BOUYUKLIEVA S. Optimal binary LCD codes[J]. Designs, Codes and Cryptography, 2021, 89(11): 2445–2461. doi: 10.1007/s10623-021-00929-w
|
[28] |
ARAYA M, HARADA M, and SAITO K. Characterization and classification of optimal LCD codes[J]. Designs, Codes and Cryptography, 2021, 89(4): 617–640. doi: 10.1007/s10623-020-00834-8
|
[29] |
HARADA M. Construction of binary LCD codes, ternary LCD codes and quaternary Hermitian LCD codes[J]. Designs, Codes and Cryptography, 2021, 89(10): 2295–2312. doi: 10.1007/s10623-021-00916-1
|
[30] |
ARAYA M, HARADA M, and SAITO K. On the minimum weights of binary LCD codes and ternary LCD codes[J]. Finite Fields and Their Applications, 2021, 76: 101925. doi: 10.1016/j.ffa.2021.101925
|
[31] |
LIU Xiusheng, LIU Hualu, and YU Long. New binary and ternary LCD codes from matrix-product codes[J]. Linear and Multilinear Algebra, 2022, 70(5): 809–823. doi: 10.1080/03081087.2020.1748851
|
[32] |
HUANG Xinmei, YUE Qin, WU Yansheng, et al. Ternary primitive LCD BCH codes[J]. American Institute of Mathematical Sciences, To be published.
|
[33] |
李平, 张嘉媛, 孙中华. 一种三元线性互补对偶码与自正交码的构造方法[J]. 电子与信息学报, 2022, 44(11): 4018–4024. doi: 10.11999/JEIT210979
LI Ping, ZHANG Jiayuan, and SUN Zhonghua. A construction method of ternary linear complementary dual codes and self-orthogonal codes[J]. Journal of Electronics &Information Technology, 2022, 44(11): 4018–4024. doi: 10.11999/JEIT210979
|
[34] |
DINH H Q and LÓPEZ-PERMOUTH S R. Cyclic and negacyclic codes over finite chain rings[J]. IEEE Transactions on Information Theory, 2004, 50(8): 1728–1744. doi: 10.1109/TIT.2004.831789
|
[35] |
NORTON G H and SĂLĂGEAN A. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(6): 489–506. doi: 10.1007/PL00012382
|
[36] |
张付丽, 开晓山, 朱士信, 等. 一种有限域上自正交码的构造方法[J]. 电子与信息学报, 2014, 36(10): 2326–2330. doi: 10.3724/SP.J.1146.2013.01765
ZHANG Fuli, KAI Xiaoshan, ZHU Shixin, et al. A method for constructing self-orthogonal codes over finite fields[J]. Journal of Electronics &Information Technology, 2014, 36(10): 2326–2330. doi: 10.3724/SP.J.1146.2013.01765
|
[37] |
MACWILLIAMS F J and SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam, The Netherlands: North Holland, 1977: 19, 201, 206.
|
[38] |
FANG Weijun, WEN Jiejing, and FU Fangwei. A q-polynomial approach to constacyclic codes[J]. Finite Fields and Their Applications, 2017, 47: 161–182. doi: 10.1016/j.ffa.2017.06.009
|
[39] |
GRASSL M. Code Tables: Bounds on the parameters of various types of codes[EB/OL]. http://www.codetables.de, 2022.
|