Advanced Search
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Junchao, YANG Feifan, SHI Wei, CHEN Jianlai, ZHAO Dangjun, YANG Degui. Method for High Dynamic Range Imaging Based on Deep Guided and Self-learning[J]. Journal of Electronics & Information Technology, 2023, 45(1): 291-299. doi: 10.11999/JEIT211188
Citation: ZHANG Junchao, YANG Feifan, SHI Wei, CHEN Jianlai, ZHAO Dangjun, YANG Degui. Method for High Dynamic Range Imaging Based on Deep Guided and Self-learning[J]. Journal of Electronics & Information Technology, 2023, 45(1): 291-299. doi: 10.11999/JEIT211188

Method for High Dynamic Range Imaging Based on Deep Guided and Self-learning

doi: 10.11999/JEIT211188
Funds:  The National Natural Science Foundation of China (62105372, 61901531), The Foundation of Key Laboratory of National Defense Science and Technology (6142401200301), The Natural Science Foundation of Hunan Province (2021JJ40794, 2021JJ40781)
  • Received Date: 2021-10-28
  • Rev Recd Date: 2022-03-24
  • Available Online: 2022-03-30
  • Publish Date: 2023-01-17
  • Multi-exposure image fusion aims to fuse a series of images with different exposures for the same scene, and it is the main-stream method for high dynamic range imaging. To obtain more realistic results, a Multi-Exposure image Fusion Network(MEF-Net) based on deep guided and self-learning is proposed. This network is designed to fuse any number of images with different exposures in an end-to-end way, and generate the best-fused results in an unsupervised way. In terms of the loss function, an intensity fidelity constraint term and the weighted Multi-Exposure image Fusion Structural SIMilarity(MEF-SSIM) are introduced to improve the fusion quality. Moreover, a self-learning method is adopted to fine-tune and optimize the pre-learned model, considering the fusion problem of two images under extreme exposure to mitigate the halo phenomenon generated by fusion. Based on abundant testing data, experimental results show that the proposed algorithm outperforms other mainstream methods in terms of both quantitative measurement and visual fused quality.
  • loading
  • [1]
    李卫中, 易本顺, 邱康, 等. 细节保留的多曝光图像融合[J]. 光学 精密工程, 2016, 24(9): 2283–2292. doi: 10.3788/OPE.20162409.2283

    LI Weizhong, YI Benshun, QIU Kang, et al. Detail preserving multi-exposure image fusion[J]. Optics and Precision Engineering, 2016, 24(9): 2283–2292. doi: 10.3788/OPE.20162409.2283
    [2]
    孙婧, 徐岩, 段绿茵, 等. 高动态范围(HDR)技术综述[J]. 信息技术, 2016(5): 41–45,49. doi: 10.13274/j.cnki.hdzj.2016.05.012

    SUN Jing, XU Yan, DUAN Lvyin, et al. A survey on high dynamic range display technology[J]. Information Technology, 2016(5): 41–45,49. doi: 10.13274/j.cnki.hdzj.2016.05.012
    [3]
    MARCHESSOUX C, DE PAEPE L, VANOVERMEIRE O, et al. Clinical evaluation of a medical high dynamic range display[J]. Medical Physics, 2016, 43(7): 4023–4031. doi: 10.1118/1.4953187
    [4]
    王东. 基于卷积神经网络的高动态成像技术研究[D]. [硕士论文], 西安电子科技大学, 2020.

    WANG Dong. Investigation of high dynamic imaging technique based on convolutional neural network[D]. [Master dissertation], Xidian University, 2020.
    [5]
    马夏一, 范方晴, 卢陶然, 等. 基于图像块分解的多曝光图像融合去鬼影算法[J]. 光学学报, 2019, 39(9): 0910001. doi: 10.3788/AOS201939.0910001

    MA Xiayi, FAN Fangqing, LU Taoran, et al. Multi-exposure image fusion de-ghosting algorithm based on image block decomposition[J]. Acta Optica Sinica, 2019, 39(9): 0910001. doi: 10.3788/AOS201939.0910001
    [6]
    SHEN Rui, CHENG I, SHI Jianbo, et al. Generalized random walks for fusion of multi-exposure images[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3634–3646. doi: 10.1109/TIP.2011.2150235
    [7]
    HOU Xinglin, LUO Haibo, QI Feng, et al. Guided filter-based fusion method for multiexposure images[J]. Optical Engineering, 2016, 55(11): 113101. doi: 10.1117/1.OE.55.11.113101
    [8]
    LEE S H, PARK J S, and CHO N I. A multi-exposure image fusion based on the adaptive weights reflecting the relative pixel intensity and global gradient[C]. 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 2018: 1737–1741.
    [9]
    LI Hui, MA Kede, YONG Hongwei, et al. Fast multi-scale structural patch decomposition for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 5805–5816. doi: 10.1109/TIP.2020.2987133
    [10]
    HOU Xinglin, ZHANG Junchao, and ZHOU Peipei. Reconstructing a high dynamic range image with a deeply unsupervised fusion model[J]. IEEE Photonics Journal, 2021, 13(2): 3900210. doi: 10.1109/JPHOT.2021.3058740
    [11]
    江泽涛, 何玉婷. 基于卷积自编码器和残差块的红外与可见光图像融合方法[J]. 光学学报, 2019, 39(10): 1015001. doi: 10.3788/AOS201939.1015001

    JIANG Zetao and HE Yuting. Infrared and visible image fusion method based on convolutional auto-encoder and residual block[J]. Acta Optica Sinica, 2019, 39(10): 1015001. doi: 10.3788/AOS201939.1015001
    [12]
    唐超影, 浦世亮, 叶鹏钊, 等. 基于卷积神经网络的低照度可见光与近红外图像融合[J]. 光学学报, 2020, 40(16): 1610001. doi: 10.3788/AOS202040.1610001

    TANG Chaoying, PU Shiliang, YE Pengzhao, et al. Fusion of low-illuminance visible and near-infrared images based on convolutional neural networks[J]. Acta Optica Sinica, 2020, 40(16): 1610001. doi: 10.3788/AOS202040.1610001
    [13]
    LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/TIP.2018.2887342
    [14]
    聂茜茜, 肖斌, 毕秀丽, 等. 基于超像素级卷积神经网络的多聚焦图像融合算法[J]. 电子与信息学报, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053

    NIE Xixi, XIAO Bin, BI Xiuli, et al. Multi-focus image fusion algorithm based on super pixel level convolutional neural network[J]. Journal of Electronics &Information Technology, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053
    [15]
    MA Boyuan, ZHU Yu, YIN Xiang, et al. SESF-Fuse: An unsupervised deep model for multi-focus image fusion[J]. Neural Computing and Applications, 2021, 33(11): 5793–5804. doi: 10.1007/s00521-020-05358-9
    [16]
    ZHANG Junchao, SHAO Jianbo, CHEN Jianlai, et al. PFNet: An unsupervised deep network for polarization image fusion[J]. Optics Letters, 2020, 45(6): 1507–1510. doi: 10.1364/OL.384189
    [17]
    ZHANG Junchao, SHAO Jianbo, CHEN Jianlai, et al. Polarization image fusion with self-learned fusion strategy[J]. Pattern Recognition, 2021, 118: 108045. doi: 10.1016/j.patcog.2021.108045
    [18]
    CAI Jianrui, GU Shuhang, and ZHANG Lei. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049–2062. doi: 10.1109/TIP.2018.2794218
    [19]
    PRABHAKAR K R, SRIKAR V S, and BABU R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 4724–4732.
    [20]
    JUNG H, KIM Y, JANG H, et al. Unsupervised deep image fusion with structure tensor representations[J]. IEEE Transactions on Image Processing, 2020, 29: 3845–3858. doi: 10.1109/TIP.2020.2966075
    [21]
    XU Han, MA Jiayi, JIANG Junjun, et al. U2Fusion: A unified unsupervised image fusion network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 502–518. doi: 10.1109/TPAMI.2020.3012548
    [22]
    XU Han, MA Jiayi, and ZHANG Xiaoping. MEF-GAN: Multi-exposure image fusion via generative adversarial networks[J]. IEEE Transactions on Image Processing, 2020, 29: 7203–7216. doi: 10.1109/TIP.2020.2999855
    [23]
    MA Kede, DUANMU Zhengfang, ZHU Hanwei, et al. Deep guided learning for fast multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 2808–2819. doi: 10.1109/TIP.2019.2952716
    [24]
    YAN Qingsen, GONG Dong, SHI Qinfeng, et al. Attention-guided network for ghost-free high dynamic range imaging[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 1751–1760.
    [25]
    LIU Zhen, LIN Wenjie, LI Xinpeng, et al. ADNet: Attention-guided deformable convolutional network for high dynamic range imaging[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, USA, 2021: 463–470.
    [26]
    SHARIF S M A, NAQVI R A, BISWAS M, et al. A two-stage deep network for high dynamic range image reconstruction[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, USA, 2021: 550–559.
    [27]
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    [28]
    MA Kede, ZENG Kai, and WANG Zhou. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345–3356. doi: 10.1109/TIP.2015.2442920
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (704) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return