Citation: | ZHANG Limin, TAN Kaiwen, YAN Wenjun, ZHANG Tingting, TANG Miao. Specific Emitter Identification Based on Continuous Learning and Joint Feature Extraction[J]. Journal of Electronics & Information Technology, 2023, 45(1): 308-316. doi: 10.11999/JEIT211176 |
[1] |
POLAK A C, DOLATSHAHI S, and GOECKEL D L. Identifying wireless users via transmitter imperfections[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(7): 1469–1479. doi: 10.1109/JSAC.2011.110812
|
[2] |
ELDEMERDASH Y A, DOBRE O A, ÜRETEN O, et al. Identification of cellular networks for intelligent radio measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 2204–2211. doi: 10.1109/TIM.2017.2687539
|
[3] |
DOBRE O A. Signal identification for emerging intelligent radios: Classical problems and new challenges[J]. IEEE Instrumentation & Measurement Magazine, 2015, 18(2): 11–18. doi: 10.1109/MIM.2015.7066677
|
[4] |
ZHANG Zhongshan, LONG Keping, and WANG Jianping. Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey[J]. IEEE Wireless Communications, 2013, 20(2): 36–42. doi: 10.1109/MWC.2013.6507392
|
[5] |
YUAN Yingjun, WANG Xiang, HUANG Zhitao, et al. Detection of radio transient signal based on permutation entropy and GLRT[J]. Wireless Personal Communications, 2015, 82(2): 1047–1057. doi: 10.1007/s11277-014-2265-2
|
[6] |
DANEV B and CAPKUN S. Transient-based identification of wireless sensor nodes[C]. 2009 IEEE International Conference on Information Processing in Sensor Networks, San Francisco, USA, 2009: 25–36.
|
[7] |
URETEN O and SERINKEN N. Bayesian detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2005, 41(6): 373–374. doi: 10.1049/el:20057769
|
[8] |
GUO Shanzeng, WHITE R E, and LOW M. A comparison study of radar emitter identification based on signal transients[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 286–291.
|
[9] |
GENÇOL K, KARA A, and AT N. Improvements on deinterleaving of radar pulses in dynamically varying signal environments[J]. Digital Signal Processing, 2017, 69: 86–93. doi: 10.1016/j.dsp.2017.06.010
|
[10] |
WANG Wenhao, SUN Zhi, PIAO Sixu, et al. Wireless physical-layer identification: Modeling and validation[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 2091–2106. doi: 10.1109/TIFS.2016.2552146
|
[11] |
YUAN Yingjun, HUANG Zhitao, WU Hao, et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. IET Communications, 2014, 8(13): 2404–2412. doi: 10.1049/iet-com.2013.0865
|
[12] |
ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert–Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908
|
[13] |
SATIJA U, TRIVEDI G, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665
|
[14] |
PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425–54434. doi: 10.1109/ACCESS.2019.2913759
|
[15] |
AGHNAIYA A, DALVEREN Y, and KARA A. On the performance of variational mode decomposition-based radio frequency fingerprinting of Bluetooth devices[J]. Sensors, 2020, 20(6): 1704. doi: 10.3390/s20061704
|
[16] |
SA Kejin, LANG Dapeng, WANG Chenggang, et al. Specific emitter identification techniques for the internet of things[J]. IEEE Access, 2020, 8: 1644–1652. doi: 10.1109/ACCESS.2019.2962626
|
[17] |
SUN Liting, WANG Xiang, YANG Afeng, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27: 471–475. doi: 10.1109/LSP.2020.2978333
|
[18] |
秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084
QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084
|
[19] |
WANG Xinyue, SU Chang, and SUN Songlin. An improved method of radar emitter fingerprint recognition based on GS-SVM[C]. 2019 19th International Symposium on Communications and Information Technologies (ISCIT), Ho Chi Minh City, Vietnam, 2019: 244–248.
|
[20] |
韩洁, 张涛, 王欢欢, 等. 基于3D-Hibert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38(4): 99–109. doi: 10.11959/j.issn.1000-436x.2017080
HAN Jie, ZHANG Tao, WANG Huanhuan, et al. Communication emitter individual identification based on 3D-Hibert energy spectrum and multi-scale fractal features[J]. Journal on Communications, 2017, 38(4): 99–109. doi: 10.11959/j.issn.1000-436x.2017080
|
[21] |
QIAN Yunhan, QI Jie, KUAI Xiaoyan, et al. Specific emitter identification based on multi-level sparse representation in automatic identification system[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2872–2884. doi: 10.1109/TIFS.2021.3068010.5
|
[22] |
REN Kan, YE Hongliang, GU Guohua, et al. Pulses classification based on sparse auto-encoders neural networks[J]. IEEE Access, 2019, 7: 92651–92660. doi: 10.1109/ACCESS.2019.2927724
|
[23] |
WANG Yu, GUI Guan, GACANIN H, et al. An efficient specific emitter identification method based on complex-valued neural networks and network compression[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2305–2317. doi: 10.1109/JSAC.2021.3087243
|
[24] |
YU Jiabao, HU Aiqun, LI Guyue, et al. A robust RF fingerprinting approach using multisampling convolutional neural network[J]. IEEE Internet of Things Journal, 2019, 6(4): 6786–6799. doi: 10.1109/JIOT.2019.2911347
|
[25] |
WU Qingyang, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54(24): 1405–1407. doi: 10.1049/el.2018.6404
|
[26] |
HE Boxiang and WANG Fanggang. Cooperative specific emitter identification via multiple distorted receivers[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3791–3806. doi: 10.1109/TIFS.2020.3001721
|
[27] |
DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
|
[28] |
HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]. 2014 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 2004: 985–990.
|
[29] |
TANG Jiexiong, DENG Chenwei, and HUANG Guangbin. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 27(4): 809–821. doi: 10.1109/TNNLS.2015.2424995
|
[30] |
LE Batuan, XIAO Dong, MAO Yachun, et al. Coal quality exploration technology based on an incremental multilayer extreme learning machine and remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4192–4201. doi: 10.1109/TGRS.2018.2890040
|
[31] |
LE Batuan, XIAO Dong, MAO Yachun, et al. Coal exploration based on a multilayer extreme learning machine and satellite images[J]. IEEE Access, 2018, 6: 44328–44339. doi: 10.1109/ACCESS.2018.2860278
|