Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
GUO Yinan, SHAO Huijie, GONG Dunwei, LI Haiquan, CHEN Li. Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 99-106. doi: 10.11999/JEIT211171
Citation: GUO Yinan, SHAO Huijie, GONG Dunwei, LI Haiquan, CHEN Li. Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 99-106. doi: 10.11999/JEIT211171

Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network

doi: 10.11999/JEIT211171
Funds:  The National Natural Science Foundation of China (61973305), Fundamental Research Funds of China University of Mining and Technology (2020ZDPY0302)
  • Received Date: 2021-10-26
  • Accepted Date: 2021-12-27
  • Rev Recd Date: 2021-12-24
  • Available Online: 2022-01-04
  • Publish Date: 2022-01-10
  • Atrial fibrillation is a common arrhythmia and its morbidity increases with age. Thus, stroke risk and cardiogenic mortality can be significantly reduced by early atrial fibrillation detection from ElectroCardioGram (ECG). In order to improve effectively detection accuracy, a novel approach is proposed to detect atrial fibrillation based on Hilbert-Huang Transform(HHT) and deep convolutional neural network. HHT is employed to transform electrocardiogram from time domain to time-frequency domain so as to enrich the feature of original data. Following that, DenseNet is introduced to deal with the detailed graph and the best model is selected during the iteration. The optimal model obtained by the proposed method achieves 99.11% and 97.25% accuracy respectively on the Massachusetts Institute of Technology - Beth Israel Hospital(MIT-BIH) and 2017 PhysioNet Challenge atrial fibrillation databases. In addition, HHT and DenseNet are compared with other time-frequency analysis and convolutional neural networks, respectively. Compared with some existing methods, the results proved that atrial fibrillation detection by HHT and Deep Convolutional Neural Network(DCNN) obtains a high detection performance.
  • loading
  • [1]
    YOUNG M. Atrial fibrillation[J]. Critical Care Nursing Clinics of North America, 2019, 31(1): 77–90. doi: 10.1016/j.cnc.2018.11.005
    [2]
    HENDRIKS J M L and HEIDBÜCHEL H. The management of atrial fibrillation: An integrated team approach–insights of the 2016 European Society of Cardiology guidelines for the management of atrial fibrillation for nurses and allied health professionals[J]. European Journal of Cardiovascular Nursing, 2019, 18(2): 88–95. doi: 10.1177/1474515118804480
    [3]
    KIRCHHOF P, BENUSSI S, KOTECHA D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Kardiol Pol, 2016, 74(12): 1359–1469. doi: 10.5603/KP.2016.0172
    [4]
    FREEDMAN B, CAMM J, CALKINS H, et al. Screening for atrial fibrillation: A report of the AF-SCREEN international collaboration[J]. Circulation, 2017, 135(19): 1851–1867. doi: 10.1161/CIRCULATIONAHA.116.026693
    [5]
    LAI Dakun, ZHANG Xinshu, ZHANG Yifei, et al. Convolutional neural network based detection of atrial fibrillation combing R-R intervals and F-wave frequency spectrum[C]. The 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019: 4897–4900.
    [6]
    DUNCKER D, DING W Y, ETHERIDGE S, et al. Smart wearables for cardiac monitoring—real-world use beyond atrial fibrillation[J]. Sensors, 2021, 21(7): 2539. doi: 10.3390/s21072539
    [7]
    EBRAHIMZADEH E, KALANTARI M, JOULANI M, et al. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal[J]. Computer Methods and Programs in Biomedicine, 2018, 165: 53–67. doi: 10.1016/j.cmpb.2018.07.014
    [8]
    MOHEBBI M and GHASSEMIAN H. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal[J]. Computer Methods and Programs in Biomedicine, 2012, 105(1): 40–49. doi: 10.1016/j.cmpb.2010.07.011
    [9]
    ACHARYA U R, FUJITA H, LIH O S, et al. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network[J]. Information Sciences, 2017, 405: 81–90. doi: 10.1016/j.ins.2017.04.012
    [10]
    蒋芳芳, 徐敬傲, 李任, 等. 基于CNN的心冲击信号阵发性房颤自动检测方法[J]. 东北大学学报:自然科学版, 2019, 40(11): 1539–1542,1548. doi: 10.12068/j.issn.1005-3026.2019.11.004

    JIANG Fangfang, XU Jing’ao, LI Ren, et al. Automatic detection method of paroxysmal atrial fibrillation for ballistocardiagram based on CNN[J]. Journal of Northeastern University:Natural Science, 2019, 40(11): 1539–1542,1548. doi: 10.12068/j.issn.1005-3026.2019.11.004
    [11]
    PETMEZAS G, HARIS K, STEFANOPOULOS L, et al. Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets[J]. Biomedical Signal Processing and Control, 2021, 63: 102194. doi: 10.1016/j.bspc.2020.102194
    [12]
    杨萍, 王丹, 康子健, 等. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报:工学版, 2020, 54(5): 1039–1048. doi: 10.3785/j.issn.1008-973X.2020.05.023

    YANG Ping, WANG Dan, KANG Zijian, et al. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(5): 1039–1048. doi: 10.3785/j.issn.1008-973X.2020.05.023
    [13]
    顾佳艳, 蒋明峰, 李杨, 等. 基于多头注意力机制的房颤检测方法[J]. 计算机系统应用, 2021, 30(4): 17–24. doi: 10.15888/j.cnki.csa.007885

    GU Jiayan, JIANG Mingfeng, LI Yang, et al. Atrial fibrillation detection using multi-head attention mechanism[J]. Computer Systems &Applications, 2021, 30(4): 17–24. doi: 10.15888/j.cnki.csa.007885
    [14]
    FAN Xiaomao, YAO Qihang, CAI Yunpeng, et al. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(6): 1744–1753. doi: 10.1109/JBHI.2018.2858789
    [15]
    XIA Yong, WULAN Naren, WANG Kuanquan, et al. Detecting atrial fibrillation by deep convolutional neural networks[J]. Computers in Biology and Medicine, 2018, 93: 84–92. doi: 10.1016/j.compbiomed.2017.12.007
    [16]
    MA Caiyun, WEI Shoushui, CHEN Tongshuai, et al. Integration of results from convolutional neural network in a support vector machine for the detection of atrial fibrillation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 2504610. doi: 10.1109/TIM.2020.3044718
    [17]
    杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774

    YANG Shuying, GUI Binbin, and CHEN Shengyong. Arrhythmia detection based on wavelet decomposition and 1D-GoogLeNet[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
    [18]
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    [19]
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2017: 2261–2269.
    [20]
    杨永春, 廖红英, 尹晓姝. 远程心电监测系统在阵发性房颤监测中的应用价值[J]. 检验医学与临床, 2021, 18(19): 2824–2826. doi: 10.3969/j.issn.1672-9455.2021.19.010

    YANG Yongchun, LIAO Hongying, and YIN Xiaoshu. Application value of remote ECG monitoring system in monitoring paroxysmal atrial fibrillation[J]. Laboratory Medicine and Clinic, 2021, 18(19): 2824–2826. doi: 10.3969/j.issn.1672-9455.2021.19.010
    [21]
    胡振原, 刘澄玉, 李建清. 一种可消除运动伪迹的可穿戴心电监测系统[J]. 电子测量技术, 2020, 43(15): 72–78. doi: 10.19651/j.cnki.emt.2004492

    HU Zhenyuan, LIU Chengyu, and LI Jianqing. Wearable ECG detection system for eliminating motion artifacts[J]. Electronic Measurement Technology, 2020, 43(15): 72–78. doi: 10.19651/j.cnki.emt.2004492
    [22]
    MOODY G B and MARK R R. A new method for detecting atrial fibrillation using R-R intervals[J]. Computers in Cardiology, 1983, 10: 227–230.
    [23]
    GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220. doi: 10.1161/01.CIR.101.23.e215
    [24]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [25]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [26]
    JIN Yanrui, QIN Chengjin, HUANG Yixiang, et al. Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks[J]. Knowledge-Based Systems, 2020, 193: 105460. doi: 10.1016/j.knosys.2019.105460
    [27]
    JIN Yanrui, QIN Chengjin, LIU Jinlei, et al. A novel domain adaptive residual network for automatic atrial fibrillation detection[J]. Knowledge-Based Systems, 2020, 203: 106122. doi: 10.1016/j.knosys.2020.106122
    [28]
    FAUST O, SHENFIELD A, KAREEM M, et al. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals[J]. Computers in Biology and Medicine, 2018, 102: 327–335. doi: 10.1016/j.compbiomed.2018.07.001
    [29]
    MA Fengying, ZHANG Jingyao, CHEN Wei, et al. An automatic system for atrial fibrillation by using a CNN-LSTM Model[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 3198783. doi: 10.1155/2020/3198783
    [30]
    ANDERSEN R S, PEIMANKAR A, and PUTHUSSERYPADY S. A deep learning approach for real-time detection of atrial fibrillation[J]. Expert Systems with Applications, 2019, 115: 465–473. doi: 10.1016/j.eswa.2018.08.011
    [31]
    BEHAR J A, ROSENBERG A A, YANIV Y, et al. Rhythm and quality classification from short ECGs recorded using a mobile device[C]. 2017 Computing in Cardiology (CinC), Rennes, France, 2017, doi: 10.22489/CinC.2017.165-056.
    [32]
    LIMAM M and PRECIOSO F. Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network[C]. 2017 Computing in Cardiology (CinC), Rennes, France, 2017, doi: 10.22489/CinC.2017.171-325.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article Metrics

    Article views (778) PDF downloads(121) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return