Citation: | GUO Yinan, SHAO Huijie, GONG Dunwei, LI Haiquan, CHEN Li. Atrial Fibrillation Detection Based on Hilbert-Huang Transform and Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 99-106. doi: 10.11999/JEIT211171 |
[1] |
YOUNG M. Atrial fibrillation[J]. Critical Care Nursing Clinics of North America, 2019, 31(1): 77–90. doi: 10.1016/j.cnc.2018.11.005
|
[2] |
HENDRIKS J M L and HEIDBÜCHEL H. The management of atrial fibrillation: An integrated team approach–insights of the 2016 European Society of Cardiology guidelines for the management of atrial fibrillation for nurses and allied health professionals[J]. European Journal of Cardiovascular Nursing, 2019, 18(2): 88–95. doi: 10.1177/1474515118804480
|
[3] |
KIRCHHOF P, BENUSSI S, KOTECHA D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS[J]. Kardiol Pol, 2016, 74(12): 1359–1469. doi: 10.5603/KP.2016.0172
|
[4] |
FREEDMAN B, CAMM J, CALKINS H, et al. Screening for atrial fibrillation: A report of the AF-SCREEN international collaboration[J]. Circulation, 2017, 135(19): 1851–1867. doi: 10.1161/CIRCULATIONAHA.116.026693
|
[5] |
LAI Dakun, ZHANG Xinshu, ZHANG Yifei, et al. Convolutional neural network based detection of atrial fibrillation combing R-R intervals and F-wave frequency spectrum[C]. The 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019: 4897–4900.
|
[6] |
DUNCKER D, DING W Y, ETHERIDGE S, et al. Smart wearables for cardiac monitoring—real-world use beyond atrial fibrillation[J]. Sensors, 2021, 21(7): 2539. doi: 10.3390/s21072539
|
[7] |
EBRAHIMZADEH E, KALANTARI M, JOULANI M, et al. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal[J]. Computer Methods and Programs in Biomedicine, 2018, 165: 53–67. doi: 10.1016/j.cmpb.2018.07.014
|
[8] |
MOHEBBI M and GHASSEMIAN H. Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal[J]. Computer Methods and Programs in Biomedicine, 2012, 105(1): 40–49. doi: 10.1016/j.cmpb.2010.07.011
|
[9] |
ACHARYA U R, FUJITA H, LIH O S, et al. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network[J]. Information Sciences, 2017, 405: 81–90. doi: 10.1016/j.ins.2017.04.012
|
[10] |
蒋芳芳, 徐敬傲, 李任, 等. 基于CNN的心冲击信号阵发性房颤自动检测方法[J]. 东北大学学报:自然科学版, 2019, 40(11): 1539–1542,1548. doi: 10.12068/j.issn.1005-3026.2019.11.004
JIANG Fangfang, XU Jing’ao, LI Ren, et al. Automatic detection method of paroxysmal atrial fibrillation for ballistocardiagram based on CNN[J]. Journal of Northeastern University:Natural Science, 2019, 40(11): 1539–1542,1548. doi: 10.12068/j.issn.1005-3026.2019.11.004
|
[11] |
PETMEZAS G, HARIS K, STEFANOPOULOS L, et al. Automated atrial fibrillation detection using a hybrid CNN-LSTM network on imbalanced ECG datasets[J]. Biomedical Signal Processing and Control, 2021, 63: 102194. doi: 10.1016/j.bspc.2020.102194
|
[12] |
杨萍, 王丹, 康子健, 等. 基于模式识别和集成CNN-LSTM的阵发性房颤预测模型[J]. 浙江大学学报:工学版, 2020, 54(5): 1039–1048. doi: 10.3785/j.issn.1008-973X.2020.05.023
YANG Ping, WANG Dan, KANG Zijian, et al. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of Zhejiang University:Engineering Science, 2020, 54(5): 1039–1048. doi: 10.3785/j.issn.1008-973X.2020.05.023
|
[13] |
顾佳艳, 蒋明峰, 李杨, 等. 基于多头注意力机制的房颤检测方法[J]. 计算机系统应用, 2021, 30(4): 17–24. doi: 10.15888/j.cnki.csa.007885
GU Jiayan, JIANG Mingfeng, LI Yang, et al. Atrial fibrillation detection using multi-head attention mechanism[J]. Computer Systems &Applications, 2021, 30(4): 17–24. doi: 10.15888/j.cnki.csa.007885
|
[14] |
FAN Xiaomao, YAO Qihang, CAI Yunpeng, et al. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(6): 1744–1753. doi: 10.1109/JBHI.2018.2858789
|
[15] |
XIA Yong, WULAN Naren, WANG Kuanquan, et al. Detecting atrial fibrillation by deep convolutional neural networks[J]. Computers in Biology and Medicine, 2018, 93: 84–92. doi: 10.1016/j.compbiomed.2017.12.007
|
[16] |
MA Caiyun, WEI Shoushui, CHEN Tongshuai, et al. Integration of results from convolutional neural network in a support vector machine for the detection of atrial fibrillation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 2504610. doi: 10.1109/TIM.2020.3044718
|
[17] |
杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
YANG Shuying, GUI Binbin, and CHEN Shengyong. Arrhythmia detection based on wavelet decomposition and 1D-GoogLeNet[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
|
[18] |
HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
|
[19] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2017: 2261–2269.
|
[20] |
杨永春, 廖红英, 尹晓姝. 远程心电监测系统在阵发性房颤监测中的应用价值[J]. 检验医学与临床, 2021, 18(19): 2824–2826. doi: 10.3969/j.issn.1672-9455.2021.19.010
YANG Yongchun, LIAO Hongying, and YIN Xiaoshu. Application value of remote ECG monitoring system in monitoring paroxysmal atrial fibrillation[J]. Laboratory Medicine and Clinic, 2021, 18(19): 2824–2826. doi: 10.3969/j.issn.1672-9455.2021.19.010
|
[21] |
胡振原, 刘澄玉, 李建清. 一种可消除运动伪迹的可穿戴心电监测系统[J]. 电子测量技术, 2020, 43(15): 72–78. doi: 10.19651/j.cnki.emt.2004492
HU Zhenyuan, LIU Chengyu, and LI Jianqing. Wearable ECG detection system for eliminating motion artifacts[J]. Electronic Measurement Technology, 2020, 43(15): 72–78. doi: 10.19651/j.cnki.emt.2004492
|
[22] |
MOODY G B and MARK R R. A new method for detecting atrial fibrillation using R-R intervals[J]. Computers in Cardiology, 1983, 10: 227–230.
|
[23] |
GOLDBERGER A L, AMARAL L A N, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215–e220. doi: 10.1161/01.CIR.101.23.e215
|
[24] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[25] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[26] |
JIN Yanrui, QIN Chengjin, HUANG Yixiang, et al. Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks[J]. Knowledge-Based Systems, 2020, 193: 105460. doi: 10.1016/j.knosys.2019.105460
|
[27] |
JIN Yanrui, QIN Chengjin, LIU Jinlei, et al. A novel domain adaptive residual network for automatic atrial fibrillation detection[J]. Knowledge-Based Systems, 2020, 203: 106122. doi: 10.1016/j.knosys.2020.106122
|
[28] |
FAUST O, SHENFIELD A, KAREEM M, et al. Automated detection of atrial fibrillation using long short-term memory network with RR interval signals[J]. Computers in Biology and Medicine, 2018, 102: 327–335. doi: 10.1016/j.compbiomed.2018.07.001
|
[29] |
MA Fengying, ZHANG Jingyao, CHEN Wei, et al. An automatic system for atrial fibrillation by using a CNN-LSTM Model[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 3198783. doi: 10.1155/2020/3198783
|
[30] |
ANDERSEN R S, PEIMANKAR A, and PUTHUSSERYPADY S. A deep learning approach for real-time detection of atrial fibrillation[J]. Expert Systems with Applications, 2019, 115: 465–473. doi: 10.1016/j.eswa.2018.08.011
|
[31] |
BEHAR J A, ROSENBERG A A, YANIV Y, et al. Rhythm and quality classification from short ECGs recorded using a mobile device[C]. 2017 Computing in Cardiology (CinC), Rennes, France, 2017, doi: 10.22489/CinC.2017.165-056.
|
[32] |
LIMAM M and PRECIOSO F. Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network[C]. 2017 Computing in Cardiology (CinC), Rennes, France, 2017, doi: 10.22489/CinC.2017.171-325.
|