Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
XIE Junwei, FANG Feng, PENG Dongliang, REN Jinlei, WANG Changping. Weapon-Target Assignment Optimization Based on Multi-attribute Decision-making and Deep Q-Network for Missile Defense System[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3833-3841. doi: 10.11999/JEIT211136
Citation: XIE Junwei, FANG Feng, PENG Dongliang, REN Jinlei, WANG Changping. Weapon-Target Assignment Optimization Based on Multi-attribute Decision-making and Deep Q-Network for Missile Defense System[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3833-3841. doi: 10.11999/JEIT211136

Weapon-Target Assignment Optimization Based on Multi-attribute Decision-making and Deep Q-Network for Missile Defense System

doi: 10.11999/JEIT211136
Funds:  The National Natural Science Foundation of China(61673146), Zhejiang Provincial University Research Foundation (GK209907299001-021)
  • Received Date: 2021-10-15
  • Accepted Date: 2022-01-14
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-02-02
  • Publish Date: 2022-11-14
  • In a large-scale Weapon-Target Assignment (WTA) problem, the explored solution space becomes enormous due to the curse of dimensionality, and it causes low-efficiency in searching optimization solution. For solving this problem effectively, a WTA optimization approach based on multi-attribute decision-making and Deep Q-Network (DQN) is proposed. Firstly, a threat-assessment model for attacking missiles is built based on the approach of Analytic Hierarchy Process (AHP). Meanwhile, an entropy method, used for evaluating the differences of target attributes, is introduced, to increase objective in computing threat-assessment results. Then, an assignment criterion of maximum intercept probability is designed based on assess results, and a multi-steps WTA decision model is built in DQN frame. A uniform experience sampling strategy is designed, making sure that each target type of assignment experience has the same probability to be selected. Furthermore, for balancing the DQN convergence speed and global optimum, a reward function that combines local and global rewards is designed. Lastly, simulation results shows that the proposed WTA approach has the advantage in solving large-scale WTA problem fast and effectively, compared with the general heuristic approach. Also, it presents the robust performance for WTA scenario elements variation.
  • loading
  • [1]
    KLINE A, AHNER D, and HILL R. The weapon-target assignment problem[J]. Computers & Operations Research, 2019, 105: 226–236. doi: 10.1016/j.cor.2018.10.015
    [2]
    YUE Jiao and ZHANG Ke. Vulnerability Threat assessment based on AHP and fuzzy comprehensive evaluation[C]. 2014 IEEE Seventh International Symposium on Computational Intelligence and Design, Hangzhou, China, 2014: 513–516.
    [3]
    杨罗章, 胡生亮, 冯士民. 基于Entropy-TOPSIS方法的目标威胁动态评估与仿真[J]. 兵工自动化, 2020, 39(3): 53–56,60. doi: 10.7690/bgzdh.2020.03.012

    YANG Luozhang, HU Shengliang, and FENG Shimin. Dynamic evaluation and simulation of targets threat based on entropy and TOPSIS method[J]. Ordnance Industry Automation, 2020, 39(3): 53–56,60. doi: 10.7690/bgzdh.2020.03.012
    [4]
    陈龙, 马亚平. 基于分层贝叶斯网络的航母编队对潜威胁评估[J]. 系统仿真学报, 2017, 29(9): 2206–2212,2220. doi: 10.16182/j.issn1004731x.joss.201709044

    CHEN Long and MA Yaping. Threat assessment of aircraft carrier formation based on hierarchical Bayesian network[J]. Journal of System Simulation, 2017, 29(9): 2206–2212,2220. doi: 10.16182/j.issn1004731x.joss.201709044
    [5]
    杨爱武, 李战武, 徐安, 等. 基于RS-CRITIC的空战目标威胁评估[J]. 北京航空航天大学学报, 2020, 46(12): 2357–2365. doi: 10.13700/j.bh.1001-5965.2019.0638

    YANG Aiwu, LI Zhanwu, XU An, et al. Threat assessment of air combat target based on RS-CRITIC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2357–2365. doi: 10.13700/j.bh.1001-5965.2019.0638
    [6]
    LLOYD S P and WITSENHAUSE H S. Weapon allocation is NP-Complete[C]. The IEEE Summer Simulation Conference, Reno, USA, 1986: 1054–1058.
    [7]
    王邑, 孙金标, 肖明清, 等. 基于类型2区间模糊K近邻分类器的动态武器目标分配方法研究[J]. 系统工程与电子技术, 2016, 38(6): 1314–1319. doi: 10.3969/j.issn.1001-506X.2016.06.15

    WANG Yi, SUN Jinbiao, XIAO Mingqing, et al. Research of dynamic weapon-target assignment problem based on type-2 interval fuzzy K-nearest neighbors classifier[J]. Systems Engineering and Electronics, 2016, 38(6): 1314–1319. doi: 10.3969/j.issn.1001-506X.2016.06.15
    [8]
    王净, 战凯, 晏峰. 基于动态规划算法的舰空导弹火力分配模型研究[J]. 舰船电子工程, 2011, 31(2): 24–26. doi: 10.3969/j.issn.1627-9730.2011.02.007

    WANG Jing, ZHAN Kai, and YAN Feng. Ship-to-air missile firepower-distributing model study based on dynamic programming algorithm[J]. Ship Electronic Engineering, 2011, 31(2): 24–26. doi: 10.3969/j.issn.1627-9730.2011.02.007
    [9]
    丁立超, 黄枫, 潘伟. 基于改进混沌遗传算法的炮兵火力分配方法[J]. 系统仿真技术, 2021, 17(1): 12–16. doi: 10.16812/j.cnki.cn31-1945.2021.01.003

    DING Lichao, HUANG Feng, and PAN Wei. Artillery fire allocation method based on improved chaotic genetic algorithm[J]. System Simulation Technology, 2021, 17(1): 12–16. doi: 10.16812/j.cnki.cn31-1945.2021.01.003
    [10]
    李俨, 董玉娜. 基于SA-DPSO混合优化算法的协同空战火力分配[J]. 航空学报, 2010, 31(3): 626–631.

    LI Yan and DONG Yu’na. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 626–631.
    [11]
    SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. doi: 10.1038/nature24270
    [12]
    ZHU Yuke, MOTTAGHI R, KOLVE E, et al. Target-driven visual navigation in indoor scenes using deep reinforcement learning[C]. 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017: 3357–3364.
    [13]
    施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究[J]. 自动化学报, 2021, 47(7): 1610–1623. doi: 10.16383/j.aas.c201059

    SHI Wei, FENG Yanghe, CHENG Guangquan, et al. Research on multi-aircraft cooperative air combat method based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(7): 1610–1623. doi: 10.16383/j.aas.c201059
    [14]
    阎栋, 苏航, 朱军. 基于DQN的反舰导弹火力分配方法研究[J]. 导航定位与授时, 2019, 6(5): 18–24. doi: 10.19306/j.cnki.2095-8110.2019.05.003

    YAN Dong, SU Hang, and ZHU Jun. Research on fire distribution method of anti-ship missile based on DQN[J]. Navigation Positioning and Timing, 2019, 6(5): 18–24. doi: 10.19306/j.cnki.2095-8110.2019.05.003
    [15]
    ZHU Yuxin, TIAN Dazuo, and YAN Feng. Effectiveness of entropy weight method in decision-making[J]. Mathematical Problems in Engineering, 2020, 2020: 3564835. doi: 10.1155/2020/3564835
    [16]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (1263) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return