Advanced Search
Volume 45 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
SU Shuzhi, ZHANG Kaiyu, WANG Ziying, ZHANG Maoyan. A Gene Feature Extraction Method Based on Across-view Similarity Order Preserving[J]. Journal of Electronics & Information Technology, 2023, 45(1): 317-324. doi: 10.11999/JEIT211126
Citation: SU Shuzhi, ZHANG Kaiyu, WANG Ziying, ZHANG Maoyan. A Gene Feature Extraction Method Based on Across-view Similarity Order Preserving[J]. Journal of Electronics & Information Technology, 2023, 45(1): 317-324. doi: 10.11999/JEIT211126

A Gene Feature Extraction Method Based on Across-view Similarity Order Preserving

doi: 10.11999/JEIT211126
Funds:  The National Natural Science Foundation of China (61806006), China Postdoctoral Science Foundation (2019M660149), The Project of Institute of Energy, Hefei Comprehensive National Science Center (19KZS203), The International Science and Technology Cooperation Project of Key Research and Development Plan in Anhui Province (202004b11020029)
  • Received Date: 2021-10-14
  • Accepted Date: 2022-01-12
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-02-02
  • Publish Date: 2023-01-17
  • Gene expression data is usually characterized by high dimension, few samples and uneven classification distribution. How to extract the effective features of gene expression data is a critical problem of gene classification. With the help of correlation analysis theory, the within-view and between-view discrimination sensitive similarity order scatter can be construsted, thus forming a new method of gene feature extraction, namely, Similarity Order Preserving Across-view Correlation Analysis(SOPACA). The proposed method not only maintains the intra-class aggregation and similarity order of features between different views, but also has a large distance between classes. Good experimental results on cancer gene expression datasets demonstrate the effectiveness of the method.
  • loading
  • [1]
    SHUMATE A and SALZBERG S L. Liftoff: Accurate mapping of gene annotations[J]. Bioinformatics, 2021, 37(12): 1639–1643. doi: 10.1093/BIOINFORMATICS/BTAA1016
    [2]
    LU Rongxiu, CAI Yingjie, ZHU Jianyong, et al. Dimension reduction of multimodal data by auto-weighted local discriminant analysis[J]. Neurocomputing, 2021, 461: 27–40. doi: 10.1016/J.NEUCOM.2021.06.035
    [3]
    王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138

    WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
    [4]
    ARTONI F, DELORME A, and MAKEIG S. Applying dimension reduction to EEG data by principal component analysis reduces the quality of its subsequent independent component decomposition[J]. NeuroImage, 2018, 175: 176–187. doi: 10.1016/j.neuroimage.2018.03.016
    [5]
    LI Chunna, SHAO Yuanhai, CHEN Weijie, et al. Generalized two-dimensional linear discriminant analysis with regularization[J]. Neural Networks, 2021, 142: 73–91. doi: 10.1016/J.NEUNET.2021.04.030
    [6]
    NAKAYAMA Y, YATA K, and AOSHIMA M. Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings[J]. Journal of Multivariate Analysis, 2021, 185: 104779. doi: 10.1016/J.JMVA.2021.104779
    [7]
    CLAYMAN C L, SRINIVASAN S M, and SANGWAN R S. K-means clustering and principal components analysis of microarray data of L1000 landmark genes[J]. Procedia Computer Science, 2020, 168: 97–104. doi: 10.1016/j.procs.2020.02.265
    [8]
    WANG Cheng, CAO Longbing, and MIAO Baiqi. Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data[J]. Computational Statistics & Data Analysis, 2013, 66: 140–149. doi: 10.1016/j.csda.2013.04.003
    [9]
    LIN Weiming, GAO Qinquan, DU Min, et al. Multiclass diagnosis of stages of Alzheimer's disease using linear discriminant analysis scoring for multimodal data[J]. Computers in Biology and Medicine, 2021, 134: 104478. doi: 10.1016/J.COMPBIOMED.2021.104478
    [10]
    苏树智, 谢军, 平昕瑞, 等. 图强化典型相关分析及在图像识别中的应用[J]. 电子与信息学报, 2021, 43(11): 3342–3349. doi: 10.11999/JEIT210154

    SU Shuzhi, XIE Jun, PING Xinrui, et al. Graph enhanced canonical correlation analysis and its application to image recognition[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3342–3349. doi: 10.11999/JEIT210154
    [11]
    LIN Dongdong, CALHOUN V D, and WANG Yuping. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis[J]. Medical Image Analysis, 2014, 18(6): 891–902. doi: 10.1016/j.media.2013.10.010
    [12]
    TENENHAUS A, PHILIPPE C, and FROUIN V. Kernel generalized canonical correlation analysis[J]. Computational Statistics & Data Analysis, 2015, 90: 114–131. doi: 10.1016/j.csda.2015.04.004
    [13]
    WANG Wenjia and ZHOU Yihui. Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors[J]. Journal of Multivariate Analysis, 2021, 185: 104781. doi: 10.1016/J.JMVA.2021.104781
    [14]
    YUAN Yunhao, SUN Quansen, ZHOU Qiang, et al. A novel multiset integrated canonical correlation analysis framework and its application in feature fusion[J]. Pattern Recognition, 2011, 44(5): 1031–1040. doi: 10.1016/j.patcog.2010.11.004
    [15]
    DELEUS F and VAN HULLE M M. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis[J]. Journal of Neuroscience Methods, 2011, 197(1): 143–157. doi: 10.1016/j.jneumeth.2010.11.029
    [16]
    YUAN Yunhao and SUN Quansen. Graph regularized multiset canonical correlations with applications to joint feature extraction[J]. Pattern Recognition, 2014, 47(12): 3907–3919. doi: 10.1016/j.patcog.2014.06.016
    [17]
    SU Shuzhi, GE Hongwei, and YUAN Yunhao. Kernel-aligned multi-view canonical correlation analysis for image recognition[J]. Infrared Physics & Technology, 2016, 78: 233–240. doi: 10.1016/j.infrared.2016.08.010
    [18]
    GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
    [19]
    GAO Lei, ZHANG Rui, QI Lin, et al. The labeled multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Multimedia, 2019, 21(2): 375–387. doi: 10.1109/TMM.2018.2859590
    [20]
    HU Haoshuang, FENG Dazheng, and CHEN Qingyan. A novel dimensionality reduction method: Similarity order preserving discriminant analysis[J]. Signal Processing, 2021, 182: 107933. doi: 10.1016/J.SIGPRO.2020.107933
    [21]
    SU Shuzhi, ZHU Gang, and ZHU Yanmin. An orthogonal locality and globality dimensionality reduction method based on Twin Eigen decomposition[J]. IEEE Access, 2021, 9: 55714–55725. doi: 10.1109/ACCESS.2021.3071192
    [22]
    SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction[J]. Neurocomputing, 2015, 148: 397–408. doi: 10.1016/j.neucom.2014.06.015
    [23]
    SHOKRZADE A, RAMEZANI M, TAB F A, et al. A novel extreme learning machine based kNN classification method for dealing with big data[J]. Expert Systems with Applications, 2021, 183: 115293. doi: 10.1016/J.ESWA.2021.115293
    [24]
    LIU Dongwei, JIA Runping, WANG Caifeng, et al. Automated detection of cancerous genomic sequences using genomic signal processing and machine learning[J]. Future Generation Computer Systems, 2019, 98: 233–237. doi: 10.1016/J.FUTURE.2018.12.041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (1031) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return