Citation: | SU Shuzhi, ZHANG Kaiyu, WANG Ziying, ZHANG Maoyan. A Gene Feature Extraction Method Based on Across-view Similarity Order Preserving[J]. Journal of Electronics & Information Technology, 2023, 45(1): 317-324. doi: 10.11999/JEIT211126 |
[1] |
SHUMATE A and SALZBERG S L. Liftoff: Accurate mapping of gene annotations[J]. Bioinformatics, 2021, 37(12): 1639–1643. doi: 10.1093/BIOINFORMATICS/BTAA1016
|
[2] |
LU Rongxiu, CAI Yingjie, ZHU Jianyong, et al. Dimension reduction of multimodal data by auto-weighted local discriminant analysis[J]. Neurocomputing, 2021, 461: 27–40. doi: 10.1016/J.NEUCOM.2021.06.035
|
[3] |
王肖锋, 孙明月, 葛为民. 基于图像协方差无关的增量特征提取方法研究[J]. 电子与信息学报, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
WANG Xiaofeng, SUN Mingyue, and GE Weimin. An incremental feature extraction method without estimating image covariance matrix[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2768–2776. doi: 10.11999/JEIT181138
|
[4] |
ARTONI F, DELORME A, and MAKEIG S. Applying dimension reduction to EEG data by principal component analysis reduces the quality of its subsequent independent component decomposition[J]. NeuroImage, 2018, 175: 176–187. doi: 10.1016/j.neuroimage.2018.03.016
|
[5] |
LI Chunna, SHAO Yuanhai, CHEN Weijie, et al. Generalized two-dimensional linear discriminant analysis with regularization[J]. Neural Networks, 2021, 142: 73–91. doi: 10.1016/J.NEUNET.2021.04.030
|
[6] |
NAKAYAMA Y, YATA K, and AOSHIMA M. Clustering by principal component analysis with Gaussian kernel in high-dimension, low-sample-size settings[J]. Journal of Multivariate Analysis, 2021, 185: 104779. doi: 10.1016/J.JMVA.2021.104779
|
[7] |
CLAYMAN C L, SRINIVASAN S M, and SANGWAN R S. K-means clustering and principal components analysis of microarray data of L1000 landmark genes[J]. Procedia Computer Science, 2020, 168: 97–104. doi: 10.1016/j.procs.2020.02.265
|
[8] |
WANG Cheng, CAO Longbing, and MIAO Baiqi. Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data[J]. Computational Statistics & Data Analysis, 2013, 66: 140–149. doi: 10.1016/j.csda.2013.04.003
|
[9] |
LIN Weiming, GAO Qinquan, DU Min, et al. Multiclass diagnosis of stages of Alzheimer's disease using linear discriminant analysis scoring for multimodal data[J]. Computers in Biology and Medicine, 2021, 134: 104478. doi: 10.1016/J.COMPBIOMED.2021.104478
|
[10] |
苏树智, 谢军, 平昕瑞, 等. 图强化典型相关分析及在图像识别中的应用[J]. 电子与信息学报, 2021, 43(11): 3342–3349. doi: 10.11999/JEIT210154
SU Shuzhi, XIE Jun, PING Xinrui, et al. Graph enhanced canonical correlation analysis and its application to image recognition[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3342–3349. doi: 10.11999/JEIT210154
|
[11] |
LIN Dongdong, CALHOUN V D, and WANG Yuping. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis[J]. Medical Image Analysis, 2014, 18(6): 891–902. doi: 10.1016/j.media.2013.10.010
|
[12] |
TENENHAUS A, PHILIPPE C, and FROUIN V. Kernel generalized canonical correlation analysis[J]. Computational Statistics & Data Analysis, 2015, 90: 114–131. doi: 10.1016/j.csda.2015.04.004
|
[13] |
WANG Wenjia and ZHOU Yihui. Eigenvector-based sparse canonical correlation analysis: Fast computation for estimation of multiple canonical vectors[J]. Journal of Multivariate Analysis, 2021, 185: 104781. doi: 10.1016/J.JMVA.2021.104781
|
[14] |
YUAN Yunhao, SUN Quansen, ZHOU Qiang, et al. A novel multiset integrated canonical correlation analysis framework and its application in feature fusion[J]. Pattern Recognition, 2011, 44(5): 1031–1040. doi: 10.1016/j.patcog.2010.11.004
|
[15] |
DELEUS F and VAN HULLE M M. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis[J]. Journal of Neuroscience Methods, 2011, 197(1): 143–157. doi: 10.1016/j.jneumeth.2010.11.029
|
[16] |
YUAN Yunhao and SUN Quansen. Graph regularized multiset canonical correlations with applications to joint feature extraction[J]. Pattern Recognition, 2014, 47(12): 3907–3919. doi: 10.1016/j.patcog.2014.06.016
|
[17] |
SU Shuzhi, GE Hongwei, and YUAN Yunhao. Kernel-aligned multi-view canonical correlation analysis for image recognition[J]. Infrared Physics & Technology, 2016, 78: 233–240. doi: 10.1016/j.infrared.2016.08.010
|
[18] |
GAO Lei, QI Lin, CHEN Enqing, et al. Discriminative multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Image Processing, 2018, 27(4): 1951–1965. doi: 10.1109/TIP.2017.2765820
|
[19] |
GAO Lei, ZHANG Rui, QI Lin, et al. The labeled multiple canonical correlation analysis for information fusion[J]. IEEE Transactions on Multimedia, 2019, 21(2): 375–387. doi: 10.1109/TMM.2018.2859590
|
[20] |
HU Haoshuang, FENG Dazheng, and CHEN Qingyan. A novel dimensionality reduction method: Similarity order preserving discriminant analysis[J]. Signal Processing, 2021, 182: 107933. doi: 10.1016/J.SIGPRO.2020.107933
|
[21] |
SU Shuzhi, ZHU Gang, and ZHU Yanmin. An orthogonal locality and globality dimensionality reduction method based on Twin Eigen decomposition[J]. IEEE Access, 2021, 9: 55714–55725. doi: 10.1109/ACCESS.2021.3071192
|
[22] |
SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction[J]. Neurocomputing, 2015, 148: 397–408. doi: 10.1016/j.neucom.2014.06.015
|
[23] |
SHOKRZADE A, RAMEZANI M, TAB F A, et al. A novel extreme learning machine based kNN classification method for dealing with big data[J]. Expert Systems with Applications, 2021, 183: 115293. doi: 10.1016/J.ESWA.2021.115293
|
[24] |
LIU Dongwei, JIA Runping, WANG Caifeng, et al. Automated detection of cancerous genomic sequences using genomic signal processing and machine learning[J]. Future Generation Computer Systems, 2019, 98: 233–237. doi: 10.1016/J.FUTURE.2018.12.041
|