Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
WANG Rui, WANG Zhaorui, LI Jianbin, JIN Shengzhen. High-precision GPS Signal Tracking Method Based on TDOA/FDOA Phase Stripe[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3186-3194. doi: 10.11999/JEIT210994
Citation: WANG Rui, WANG Zhaorui, LI Jianbin, JIN Shengzhen. High-precision GPS Signal Tracking Method Based on TDOA/FDOA Phase Stripe[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3186-3194. doi: 10.11999/JEIT210994

High-precision GPS Signal Tracking Method Based on TDOA/FDOA Phase Stripe

doi: 10.11999/JEIT210994
Funds:  The National Key R & D Program of China (2016YFB0501900), The National Natural Science Foundation of China (11603041), The Astronomical Union Fund: Research on Novel High Perfomance Wideband Feed and Method of Shaped Reflector Antenn (U1931125)
  • Received Date: 2021-09-16
  • Accepted Date: 2022-03-31
  • Rev Recd Date: 2022-03-15
  • Available Online: 2022-04-10
  • Publish Date: 2022-09-19
  • In order to solve the problems of complex tracking loop structure of traditional GPS receivers, and poor tracking performance in the environment of low Signal-to-Noise Ratio (SNR) and high dynamic, a new GPS signal tracking algorithm based on phase slope stripe detection is proposed, in which the pseudo-code delay can be accurately estimated by the Frequency domain phase of Time Difference Of Arrival (TDOA), and the carrier Doppler frequency offset can be accurately estimated by the Time domain phase of Frequency Difference Of Arrival (FDOA).The loop structure is simplified and the tracking accuracy is improved, compared with the traditional method, the code phase measurement accuracy is improved by 60% and the carrier Doppler measurement accuracy is improved by 31% when the SCNR is 32 dB-Hz. In addition, accurate tracking can be achieved in high dynamic environment, which has research significance for improving the performance of GPS receiver.
  • loading
  • [1]
    PHYO A S S, TUN H M, MON A, et al. Implementation and analysis of signal tracking loops for software defined GPS receiver[J]. Communications, 2020, 8(1): 9–16. doi: 10.11648/j.com.20200801.12
    [2]
    MISRA P and ENGE P. Global Positioning System: Signals, Measurements, and Performance[M]. 2nd ed. Lincoln: Ganga-Jamuna Press, 2006.
    [3]
    罗海军, 彭卫东, 李明阳, 等. 基于分段直线拟合的伪随机码相位测量法[J]. 计算机测量与控制, 2015, 23(3): 727–729,733. doi: 10.3969/j.issn.1671-4598.2015.03.015

    LUO Haijun, PENG Weidong, LI Mingyang, et al. Method of phase measurement of PN codes based on piecewise linear fitting[J]. Computer Measurement &Control, 2015, 23(3): 727–729,733. doi: 10.3969/j.issn.1671-4598.2015.03.015
    [4]
    朱云龙, 柳重堪, 张其善, 等. 一种新的GPS接收机C/A码跟踪环鉴别器算法[J]. 电子与信息学报, 2008, 30(11): 2742–2745. doi: 10.3724/SP.J.1146.2007.00598

    ZHU Yunlong, LIU Zhongkan, ZHANG Qishan, et al. A new code discrimination algorithm for C/A code tracking loop of GPS receiver[J]. Journal of Electronics &Information Technology, 2008, 30(11): 2742–2745. doi: 10.3724/SP.J.1146.2007.00598
    [5]
    傅圣友, 王兆瑞, 金声震, 等. 基于相位条纹的高精度GPS码相位测量方法[J]. 北京航空航天大学学报, 2019, 45(9): 1824–1830. doi: 10.13700/j.bh.1001-5965.2018.0767

    FU Shengyou, WANG Zhaorui, JIN Shengzhen, et al. High-precision GPS code phase measurement method based on phase stripe[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1824–1830. doi: 10.13700/j.bh.1001-5965.2018.0767
    [6]
    JIN Xiaojun, PENG Zhen, MA Zhipeng, et al. PN code tracking based on sub-Nyquist and non-commensurate sampling[J]. Electronics Letters, 2020, 56(14): 734–736. doi: 10.1049/el.2020.0552
    [7]
    WANG Yaoding, LIU Wenxiang, HUANG Long, et al. Distortionless pseudo-code tracking space-time adaptive processor based on the PI criterion for GNSS receiver[J]. IET Radar, Sonar & Navigation, 2020, 14(12): 1984–1990. doi: 10.1049/iet-rsn.2020.0189
    [8]
    JIANG Rui, WANG Kedong, and WANG Jinling. Performance analysis and design of the optimal frequency-assisted phase tracking loop[J]. GPS Solutions, 2017, 21(2): 759–768. doi: 10.1007/s10291-016-0565-6
    [9]
    易炯, 陈倩. 一种高动态导航卫星信号的精确跟踪方法[J]. 导航定位学报, 2019, 7(1): 65–71. doi: 10.16547/j.cnki.10-1096.20190112

    YI Jiong and CHEN Qian. An accurate tracking method for high dynamic navigation satellite signals[J]. Journal of Navigation and Positioning, 2019, 7(1): 65–71. doi: 10.16547/j.cnki.10-1096.20190112
    [10]
    宦昱. 基于模糊控制的GPS高动态载波跟踪算法[J]. 自动化与仪器仪表, 2021(2): 42–45. doi: 10.14016/j.cnki.1001-9227.2021.02.042

    HUAN Yu. GPS’s high-dynamical signal carrier track method base of fuzzy control[J]. Automation &Instrumentation, 2021(2): 42–45. doi: 10.14016/j.cnki.1001-9227.2021.02.042
    [11]
    张洪伦, 巴晓辉, 陈杰, 等. 基于FFT的微弱GPS信号频率精细估计[J]. 电子与信息学报, 2015, 37(9): 2132–2137.

    ZHANG Honglun, BA Xiaohui, CHEN Jie, et al. FFT-based fine frequency estimation for weak GPS signal[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2132–2137.
    [12]
    季凯源, 张博雅, 蒋长辉. 利用支持向量机的卫星导航载波跟踪算法[J]. 电光与控制, 2019, 26(9): 42–44,83. doi: 10.3969/j.issn.1671-637X.2019.09.010

    JI Kaiyuan, ZHANG Boya, and JIANG Changhui. A GNSS carrier tracking algorithm utilizing support vector machine[J]. Electronics Optics &Control, 2019, 26(9): 42–44,83. doi: 10.3969/j.issn.1671-637X.2019.09.010
    [13]
    岳哲, 廉保旺, 唐成凯. 基于加权自适应平方根容积卡尔曼滤波的GPS/INS组合导航方法[J]. 电子与信息学报, 2018, 40(3): 565–572. doi: 10.11999/JEIT170597

    YUE Zhe, LIAN Baowang, and TANG Chengkai. A GPS/INS integrated navigation method based on weighting adaptive square-root cubature Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(3): 565–572. doi: 10.11999/JEIT170597
    [14]
    祁发瑞, 张提升, 李卓, 等. 一种改善GNSS弱信号动态跟踪性能的FFT鉴频方法[J]. 航空学报, 2018, 39(8): 198–204. doi: 10.7527/S1000-6893.2018.21932

    QI Farui, ZHANG Tisheng, LI Zhuo, et al. A FFT frequency discriminator for improving the dynamic tracking performance of GNSS weak signal[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 198–204. doi: 10.7527/S1000-6893.2018.21932
    [15]
    沈锋, 李伟东, 李强. 基于I/Q支路相干积分观测滤波的GPS接收机信号跟踪方法[J]. 电子与信息学报, 2015, 37(1): 37–42. doi: 10.11999/JEIT140314

    SHEN Feng, LI Weidong, and LI Qiang. GPS receiver signal tracking method based on I/Q branch coherent integration measurements filter[J]. Journal of Electronics &Information Technology, 2015, 37(1): 37–42. doi: 10.11999/JEIT140314
    [16]
    LIU Congfeng, YUN Jinwei, and SU Juan. Direct solution for fixed source location using well-posed TDOA and FDOA measurements[J]. Journal of Systems Engineering and Electronics, 2020, 31(4): 666–673. doi: 10.23919/JSEE.2020.000042
    [17]
    汤新华, 陈新, 修金城, 等. 几种GNSS接收机跟踪环路配置的对比分析[J]. 中国惯性技术学报, 2018, 26(5): 623–628. doi: 10.13695/j.cnki.12-1222/o3.2018.05.011

    TANG Xinhua, CHEN Xin, XIU Jincheng et al. Comparison on different tracking configurations in GNSS receivers[J]. Journal of Chinese Inertial Technology, 2018, 26(5): 623–628. doi: 10.13695/j.cnki.12-1222/o3.2018.05.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (368) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return