Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
HU Zhaozheng, XU Cong, ZHOU Zhe, DENG Zewu. Robot Localization Based on Planned Path Constraints[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3941-3950. doi: 10.11999/JEIT210984
Citation: HU Zhaozheng, XU Cong, ZHOU Zhe, DENG Zewu. Robot Localization Based on Planned Path Constraints[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3941-3950. doi: 10.11999/JEIT210984

Robot Localization Based on Planned Path Constraints

doi: 10.11999/JEIT210984
Funds:  The National Natural Science Foundation of China(U1764262), The Enterprise Technology Innovation Project of Wuhan Science and Technology Bureau(2020010601012165, 2020010602011973, 2020010602012003), The Scientific and Technological Innovation Research and Development Project of Chongqing Research Institute of Wuhan University of Technology(YF2021-04)
  • Received Date: 2021-09-15
  • Rev Recd Date: 2022-04-07
  • Available Online: 2022-04-22
  • Publish Date: 2022-11-14
  • Path planning is a step to generate a feasible path for a robot to track along. Locations of the robot are supposed to lie on or at least nearby the planned path, which can thus generate important constraints for robot localization. In this paper, a model, called Path-Induced Location Probability Map (PI-LPM), to exploit such constraint on robot localization is proposed. The proposed PI-LPM model is a Probability Density Function (PDF) over the entire map with the probability to describe the likelihood that the robot is located. The PDF is generated from all the points representing the path by applying the Kernel Density Estimation (KDE) method with each point as a sampling point. Based on the PI-LPM model, a Robot Localization from Planned Path Constraints (RL-PPC) method to enhance robot localization is proposed. In this method, particle filter is applied to fuse the develop PI-LPM model and existing localization methods, where the probability from PI-LPM is an important factor to assign weights to the particles. The proposed method is validated with both simulation and real data. In the experiment, the proposed PI-LPM model is integrated into both GPS and LiDAR based localization systems. Experimental results demonstrate that the RL-PPC method can effectively improve the over-all performance of robot localization.
  • loading
  • [1]
    宿晨庚, 郭树人, 刘旭楠, 等. 北斗三号基本系统空间信号质量评估[J]. 电子与信息学报, 2020, 42(11): 2689–2697. doi: 10.11999/JEIT190683

    SU Chengeng, GUO Shuren, LIU Xunan, et al. Signal quality assessment of BDS-3 preliminary system[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2689–2697. doi: 10.11999/JEIT190683
    [2]
    LEE B H, SONG J H, IM J H, et al. GPS/DR error estimation for autonomous vehicle localization[J]. Sensors, 2015, 15(8): 20779–20798. doi: 10.3390/s150820779
    [3]
    DU Xinxin and TAN K K. Vision-based approach towards lane line detection and vehicle localization[J]. Machine Vision and Applications, 2016, 27(2): 175–191. doi: 10.1007/s00138-015-0735-5
    [4]
    VALIENTE D, GIL A, PAYÁ L, et al. Robust visual localization with dynamic uncertainty management in omnidirectional SLAM[J]. Applied Sciences, 2017, 7(12): 1294. doi: 10.3390/app7121294
    [5]
    胡钊政, 刘佳蕙, 黄刚, 等. 融合WiFi、激光雷达与地图的机器人室内定位[J]. 电子与信息学报, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671

    HU Zhaozheng, LIU Jiahui, HUANG Gang, et al. Integration of WiFi, laser, and map for robot indoor localization[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2308–2316. doi: 10.11999/JEIT200671
    [6]
    WON P, BIGLARBEGIAN M, and MELEK W. Development of an effective docking system for modular mobile self-reconfigurable robots using extended Kalman filter and particle filter[J]. Robotics, 2015, 4(1): 25–49. doi: 10.3390/robotics4010025
    [7]
    WANG Fasheng, LIN Baowei, ZHANG Junxing, et al. Object tracking using langevin monte Carlo particle filter and locality sensitive histogram based likelihood model[J]. Computers & Graphics, 2018, 70: 214–223. doi: 10.1016/j.cag.2017.07.023
    [8]
    CAI Hao, HU Zhaozheng, HUANG Gang, et al. Integration of GPS, monocular vision, and high definition (HD) map for accurate vehicle localization[J]. Sensors, 2018, 18(10): 3270. doi: 10.3390/s18103270
    [9]
    曹祥红, 李欣妍, 魏晓鸽, 等. 基于Dijkstra-ACO混合算法的应急疏散路径动态规划[J]. 电子与信息学报, 2020, 42(6): 1502–1509. doi: 10.11999/JEIT190854

    CAO Xianghong, LI Xinyan, WEI Xiaoge, et al. Dynamic programming of emergency evacuation path based on Dijkstra-ACO hybrid algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1502–1509. doi: 10.11999/JEIT190854
    [10]
    YANG Hui, QI Jie, MIAO Yongchun, et al. A new robot navigation algorithm based on a Double-Layer ant algorithm and trajectory optimization[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8557–8566. doi: 10.1109/TIE.2018.2886798
    [11]
    李东方, 李科伟, 邓宏彬, 等. 基于人工势场与IB-LBM的机器蛇水中2D避障控制算法[J]. 机器人, 2018, 40(3): 346–359. doi: 10.13973/j.cnki.robot.170421

    LI Dongfang, LI Kewei, DENG Hongbin, et al. The 2D aquatic obstacle avoidance control algorithm of the Snake-Like Robot based on artificial potential field and IB-LBM[J]. Robot, 2018, 40(3): 346–359. doi: 10.13973/j.cnki.robot.170421
    [12]
    SHAN Tixiao and ENGLOT B. LeGO-LOAM: Lightweight and ground-optimized Lidar Odometry and mapping on variable terrain[C]. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018: 4758–4765.
    [13]
    叶珏磊, 周志峰, 王立端, 等. 一种多线激光雷达与GNSS/INS系统标定方法[J]. 激光与红外, 2020, 50(1): 30–36. doi: 10.3969/j.issn.1001-5078.2020.01.006

    YE Juelei, ZHOU Zhifeng, WANG Liduan, et al. A calibration method of Lidar and GNSS/INS system[J]. Laser &Infrared, 2020, 50(1): 30–36. doi: 10.3969/j.issn.1001-5078.2020.01.006
    [14]
    王任栋, 李华, 赵凯, 等. 基于核密度估计的城市动态密集场景激光雷达定位[J]. 光学学报, 2019, 39(5): 0528003. doi: 10.3788/AOS201939.0528003

    WANG Rendong, LI Hua, ZHAO Kai, et al. Robust localization based on kernel density estimation in dynamic diverse city scenes using Lidar[J]. Acta Optica Sinica, 2019, 39(5): 0528003. doi: 10.3788/AOS201939.0528003
    [15]
    BI Haiyun, MA Jianwen, and WANG Fangjian. An improved particle filter algorithm based on ensemble Kalman filter and Markov chain monte Carlo method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2): 447–459. doi: 10.1109/JSTARS.2014.2322096
    [16]
    刘海涛, 林艳明, 陈永华, 等. 基于遗传算法的智能粒子滤波重采样策略研究[J]. 电子与信息学报, 2021, 43(12): 3459–3466. doi: 10.11999/JEIT200561

    LIU Haitao, LIN Yanming, CHEN Yonghua, et al. A study on resampling strategy of intelligent particle filter based on genetic algorithm[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3459–3466. doi: 10.11999/JEIT200561
    [17]
    徐公国, 单甘霖, 段修生, 等. 基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法[J]. 电子与信息学报, 2019, 41(9): 2201–2208. doi: 10.11999/JEIT181129

    XU Gongguo, SHAN Ganlin, DUAN Xiusheng, et al. Scheduling method based on Markov decision process for multi-sensor cooperative detection and tracking[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2201–2208. doi: 10.11999/JEIT181129
    [18]
    ZHANG Ji and SINGH S. LOAM: Lidar Odometry and mapping in real-time[C]. Robotics: Science and Systems, Berkeley, USA, 2014: 1–10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (871) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return