Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LIU Yan, GUO Fucheng. Deinterleaving Radar Pulse Trains with Sliding Time Windows[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3900-3909. doi: 10.11999/JEIT210982
Citation: LIU Yan, GUO Fucheng. Deinterleaving Radar Pulse Trains with Sliding Time Windows[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3900-3909. doi: 10.11999/JEIT210982

Deinterleaving Radar Pulse Trains with Sliding Time Windows

doi: 10.11999/JEIT210982
Funds:  The Provincial Innovation Research Group of Hunan(2019JJ10004)
  • Received Date: 2021-09-15
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-02-26
  • Available Online: 2022-03-21
  • Publish Date: 2022-11-14
  • In the surrounding electromagnetic space, there are a large number of interleaved radar pulse trains consisting of pulse sequences with fixed repetition intervals, such as ship-borne navigation radar signals, airborne pulse Doppler radar signals, etc. These pulse trains exist in the form of time segments, and electronic reconnaissance systems are unable to determine their starting and ending time in advance, which makes it difficult to estimate the repetition intervals and deinterleave the pulses of this kind of radar. This paper first analyzes the negative impact of the short duration of such pulse trains on the performance of traditional pulse deinterleaving methods, and then introduces the idea of sliding time window to weaken this impact. Based on this idea, this paper proposes a high-precision estimator of Pulse Repetition Intervals (PRI) and a pulse deinterleaving method. Simulation results verify the performance of the new method on PRI estimation and pulse deinterleaving.
  • loading
  • [1]
    WILEY R G, 吕跃广, 译. 电子情报(ELINT): 雷达信号截获与分析[M]. 北京: 电子工业出版社, 2008: 242–255.

    WILEY R G, LV Yueguang, translation. ELINT: The Interception and Analysis of Radar Signals[M]. Beijing: Publishing House of Electronics Industry, 2008: 242–255.
    [2]
    赵国庆. 雷达对抗原理[M]. 2版. 西安: 西安电子科技大学出版社, 2012: 100–107.

    ZHAO Guoqing. Principle of Radar Countermeasure[M]. 2nd ed. Xi’an: Xidian University Press, 2012: 100–107.
    [3]
    周一宇, 安玮, 郭福成, 等. 电子对抗原理与技术[M]. 北京: 电子工业出版社, 2014: 93–125.

    ZHOU Yiyu, AN Wei, GUO Fucheng, et al. Principles and Technologies of Electronic Warfare System[M]. Beijing: Publishing House of Electronics Industry, 2014: 93–125.
    [4]
    贺平. 雷达对抗原理[M]. 北京: 国防工业出版社, 2016: 88–108.

    HE Ping. Radar Countermeasure Principle[M]. Beijing: National Defense Industry Press, 2016: 88–108.
    [5]
    何明浩, 韩俊. 现代雷达辐射源信号分选与识别[M]. 北京: 科学出版社, 2016: 32–48.

    HE Minghao and HAN Jun. Signal Sorting and Recognition of Modern Radar Emitter[M]. Beijing: Science Press, 2016: 32–48.
    [6]
    胡德秀, 赵拥军, 陈世文, 等. 雷达辐射源信号分析与处理[M]. 北京: 清华大学出版社, 2019: 15–17.

    HU Dexiu, ZHAO Yongjun, CHEN Shiwen, et al. Signal Analysis and Processing of Radar Emitter[M]. Beijing: Tsinghua University Press, 2019: 15–17.
    [7]
    隋金坪, 刘振, 刘丽, 等. 雷达辐射源信号分选研究进展[J/OL]. 雷达学报, 2022, 11(3): 418–433.

    SUI Jinping, LIU Zhen, LIU Li, et al. Progress in radar emitter signal deinterleaving[J/OL]. Journal of Radars, 2022, 11(3): 418–433.
    [8]
    赵登平. 世界海用雷达手册[M]. 2版. 北京: 国防工业出版社, 2012: 257–259.

    ZHAO Dengping. Handbook of World Marine Radar[M]. 2nd ed. Beijing: National Defense Industry Press, 2012: 257–259.
    [9]
    姜道安, 石荣. 航天电子侦察技术[M]. 北京: 国防工业出版社, 2016: 105–108.

    JIANG Daoan and SHI Rong. Aerospace Electronic Reconnaissance Technique[M]. Beijing: National Defense Industry Press, 2016: 105–108.
    [10]
    中航工业雷达与电子设备研究院. 机载雷达手册[M]. 4版. 北京: 国防工业出版社, 2013: 136.

    AVIC Radar and Electronic Equipment Research Institute. Airborne Radar Handbook[M]. 4th ed. Beijing: National Defense Industry Press, 2013: 136.
    [11]
    SKOLNIK M I, 南京电子技术研究所, 译. 雷达手册[M]. 3版. 北京: 电子工业出版社, 2010: 53–56.

    SKOLNIK M I, Nanjing Institute of Electronic Technology, translation. Radar Handbook[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2010: 53–56.
    [12]
    张锡祥, 肖开奇, 顾杰. 新体制雷达对抗导论[M]. 北京: 北京理工大学出版社, 2010: 103–106.

    ZHANG Xixiang, XIAO Kaiqi, and GU Jie. Introduction to New System Radar Countermeasure[M]. Beijing: Beijing University of Technology Press, 2010: 103–106.
    [13]
    MELVIN W L and SCHEER J A. Principles of Modern Radar: Advanced Techniques[M]. Edison, NJ: SciTech Publishing, 2013: 231–234.
    [14]
    MELVIN W L and SCHEER J A. Principles of Modern Radar: Radar Applications[M]. Edison, NJ: SciTech Publishing, 2014: 204–206.
    [15]
    RICHARDS M A, SCHEER J A, and HOLM W A. Principles of Modern Radar: Basic Principles[M]. Edison, NJ: SciTech Publishing, 2010: 634–637.
    [16]
    MARDIA H K. New techniques for the deinterleaving of repetitive sequences[J]. IEE Proceedings F:Radar and Signal Processing, 1989, 136(4): 149–154. doi: 10.1049/ip-f-2.1989.0025
    [17]
    MILOJEVIĆ D J and POPOVIĆ B M. Improved algorithm for the deinterleaving of radar pulses[J]. IEE Proceedings F:Radar and Signal Processing, 1992, 139(1): 98–104. doi: 10.1049/ip-f-2.1992.0012
    [18]
    NISHIGUCHI K and KOBAYASHI M. Improved algorithm for estimating pulse repetition intervals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 407–421. doi: 10.1109/7.845217
    [19]
    LIU Zhangmeng. Online pulse deinterleaving with finite automata[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1139–1147. doi: 10.1109/TAES.2019.2925447
    [20]
    LIU Zhangmeng and YU P S. Classification, denoising, and deinterleaving of pulse streams with recurrent neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 1624–1639. doi: 10.1109/TAES.2018.2874139
    [21]
    LI Xueqiong, LIU Zhangmeng, and HUANG Zhitao. Deinterleaving of pulse streams with denoising autoencoders[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4767–4778. doi: 10.1109/TAES.2020.3004208
    [22]
    LIU Zhangmeng. Recognition of multifunction radars via hierarchically mining and exploiting pulse group patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4659–4672. doi: 10.1109/TAES.2020.2999163
    [23]
    LIU Zhangmeng. Pulse deinterleaving for multifunction radars with hierarchical deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3585–3599. doi: 10.1109/TAES.2021.3079571
    [24]
    MITRA S K. Digital Signal Processing: A Computer-Based Approach[M]. 2nd ed. Boston: McGraw-Hill, 2001: 33–52.
    [25]
    SMITH III J O. Spectral Audio Signal Processing[M]. USA: W3K Publishing, 2011: 7–112.
    [26]
    DUDA R O and HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11–15. doi: 10.1145/361237.361242
    [27]
    ILLINGWORTH J and KITTLER J. A survey of the Hough transform[J]. Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87–116. doi: 10.1016/S0734-189X(88)80033-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (718) PDF downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return