Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI Ping, ZHANG Jiayuan, SUN Zhonghua. A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4018-4024. doi: 10.11999/JEIT210979
Citation: LI Ping, ZHANG Jiayuan, SUN Zhonghua. A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4018-4024. doi: 10.11999/JEIT210979

A Construction Method of Ternary Linear Complementary Dual Codes and Self-orthogonal Codes

doi: 10.11999/JEIT210979
Funds:  The National Natural Science Foundation of China (61972126, 61572168, 62002098)
  • Received Date: 2021-09-15
  • Accepted Date: 2021-11-23
  • Rev Recd Date: 2021-11-21
  • Available Online: 2021-11-26
  • Publish Date: 2022-11-14
  • Due to good correlation and orthogonal properties, Linear Complementary Dual (LCD) codes over the finite fields can be used to defend against channel attacks. As a very important class of codes in coding theory, self-orthogonal codes can be used to construct quantum error-correcting codes. In this paper, LCD codes over the finite field F3 are studied. By selecting appropriate defining sets and using the conditions for linear codes over the finite field F3 to be LCD codes or self-orthogonal codes, four kinds of ternary LCD codes and some self-orthogonal codes are constructed. And the dual codes of these four kinds of liner codes are also studied and some ternary optimal linear codes are obtained.
  • loading
  • [1]
    COHEN G, ENCHEVA S, and LITSYN S. On binary constructions of quantum codes[J]. IEEE Transactions on Information Theory, 1999, 45(7): 2495–2498. doi: 10.1109/18.796389
    [2]
    SHI Minjia, ÖZBUDAK F, XU Li, et al. LCD codes from tridiagonal Toeplitz matrices[J]. Finite Fields and Their Applications, 2021, 75: 101892. doi: 10.1016/J.FFA.2021.101892
    [3]
    陈刚, 李瑞虎. 三元域上对偶距离为3的自正交码构造[J]. 计算机工程与应用, 2011, 47(16): 38–39. doi: 10.3778/j.issn.1002-8331.2011.16.012

    CHEN Gang and LI Ruihu. Construction of self-orthogonal codes with dual distance three on ternary filed[J]. Computer Engineering and Applications, 2011, 47(16): 38–39. doi: 10.3778/j.issn.1002-8331.2011.16.012
    [4]
    CHEN Gang and LI Ruihu. Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three[J]. Designs, Codes and Cryptography, 2013, 69(1): 53–63. doi: 10.1007/s10623-012-9620-7
    [5]
    李益群, 刘三阳, 王雷. $ {F_4} $ 上的3维最优自正交码[J]. 西北大学学报:自然科学版, 2006, 36(6): 871–874.

    LI Yiqun, LIU Sanyang, and WANG Lei. Optimal quaternary self-orthogonal codes of dimension three[J]. Journal of Northwest University:Natural Science Edition, 2006, 36(6): 871–874.
    [6]
    SOK L, SHI Minjia, and SOLÉ P. Constructions of optimal LCD codes over large finite fields[J]. Finite Fields and Their Applications, 2018, 50: 138–153. doi: 10.1016/j.ffa.2017.11.007
    [7]
    CARLET C and GUILLEY S. Complementary dual codes for counter-measures to side-channel attacks[M]. PINTO R, MALONEK P R, and VETTORI P. Coding Theory and Applications. Cham: Springer, 2015: 97–105.
    [8]
    YANG Xiang and MASSEY J L. The condition for a cyclic code to have a complementary dual[J]. Discrete Mathematics, 1994, 126(1/3): 391–393. doi: 10.1016/0012-365x(94)90283-6
    [9]
    SENDRIER N. Linear codes with complementary duals meet the Gilbert–Varshamov bound[J]. Discrete Mathematics, 2004, 285(1/3): 345–347. doi: 10.1016/j.disc.2004.05.005
    [10]
    唐春明, 吴虹佳, 亓延峰. 有限域上的LCD码和LCP码[J]. 西华师范大学学报:自然科学版, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001

    TANG Chunming, WU Hongjia, and QI Yanfeng. LCD codes and LCP codes over finite fields[J]. Journal of China West Normal University:Natural Sciences, 2020, 41(1): 1–10. doi: 10.16246/j.issn.1673-5072.2020.01.001
    [11]
    CARLET C, MESNAGER S, TANG Chunming, et al. Linear codes over $\mathbb{F}_q $ are equivalent to LCD codes for $ q \gt 3 $ [J]. IEEE Transactions on Information Theory, 2018, 64(4): 3010–3017. doi: 10.1109/TIT.2018.2789347
    [12]
    宋倩, 李瑞虎, 付强, 等. 五元域上LCD码的构造[J]. 空军工程大学学报, 2018, 19(5): 104–108. doi: 10.3969/j.issn.1009-3516.2018.05.018

    SONG Qian, LI Ruihu, FU Qiang, et al. On the construction of LCD codes over $ {F_5} $[J]. Journal of Air Force Engineering University:Natural Science Edition, 2018, 19(5): 104–108. doi: 10.3969/j.issn.1009-3516.2018.05.018
    [13]
    ZHOU Zhengchun, LI Xia, TANG Chunming, et al. Binary LCD codes and self-orthogonal codes from a generic construction[J]. IEEE Transactions on Information Theory, 2019, 65(1): 16–27. doi: 10.1109/TIT.2018.2823704
    [14]
    LI Xia, CHENG Feng, TANG Chunming, et al. Some classes of LCD codes and self-orthogonal codes over finite fields[J]. Advances in Mathematics of Communications, 2019, 13(2): 267–280. doi: 10.3934/amc.2019018
    [15]
    钱毅, 李平, 唐永生. 一种四元厄米特LCD码与厄米特自正交码的构造方法[J]. 电子学报, 2020, 48(3): 577–581. doi: 10.3969/j.issn.0372-2112.2020.03.022

    QIAN Yi, LI Ping, and TANG Yongsheng. A construction method of quaternary hermitian LCD codes and hermitian self-orthogonal codes[J]. Acta Electronica Sinica, 2020, 48(3): 577–581. doi: 10.3969/j.issn.0372-2112.2020.03.022
    [16]
    PANG Binbin, ZHU Shixin, and KAI Xiaoshan. Some new bounds on LCD codes over finite fields[J]. Cryptography and Communications, 2020, 12(4): 743–755. doi: 10.1007/s12095-019-00417-y
    [17]
    HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2010: 48–52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (684) PDF downloads(97) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return