Citation: | YANG Yuxiang, CAO Qi, GAO Mingyu, DONG Zhekang. Multi-stage Multi-scale Color Guided Depth Image Completion for Road Scenes[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3951-3959. doi: 10.11999/JEIT210967 |
[1] |
周武杰, 潘婷, 顾鹏笠, 等. 基于金字塔池化网络的道路场景深度估计方法[J]. 电子与信息学报, 2019, 41(10): 2509–2515. doi: 10.11999/JEIT180957
ZHOU Wujie, PAN Ting, GU Pengli, et al. Depth estimation of monocular road images based on pyramid scene analysis network[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2509–2515. doi: 10.11999/JEIT180957
|
[2] |
王灿, 孔斌, 杨静, 等. 基于三维激光雷达的道路边界提取和障碍物检测算法[J]. 模式识别与人工智能, 2020, 33(4): 353–362. doi: 10.16451/j.cnki.issn1003–6059.202004008
WANG Can, KONG Bin, YANG Jing, et al. An algorithm for road boundary extraction and obstacle detection based on 3D lidar[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(4): 353–362. doi: 10.16451/j.cnki.issn1003–6059.202004008
|
[3] |
PANG Su, MORRIS D, and RADHA H. CLOCs: Camera-LiDAR object candidates fusion for 3D object detection[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 10386–10393.
|
[4] |
YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: Point-based 3D single stage object detector[C/OL]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11037–11045.
|
[5] |
马浩杰. 基于卷积神经网络的单目深度估计和深度补全研究[D]. [硕士论文], 浙江大学, 2019.
MA Haojie. Monocular depth estimation and depth completion based on convolutional neural network[D]. [Master dissertation], Zhejiang University, 2019.
|
[6] |
邱佳雄. 基于深度学习的稀疏深度图补全[D]. [硕士论文], 电子科技大学, 2020.
QIU Jiaxiong. Sparse depth completion based on deep learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
|
[7] |
HUANG Zixuan, FAN Junming, CHENG Shenggan, et al. Hms-net: Hierarchical multi-scale sparsity-invariant network for sparse depth completion[J]. IEEE Transactions on Image Processing, 2020, 29: 3429–3441. doi: 10.1109/TIP.2019.2960589
|
[8] |
MA Fangchang, CAVALHEIRO G V, and KARAMAN S. Self-supervised sparse-to-dense: Self-supervised depth completion from LiDAR and monocular camera[C]. 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019: 3288–3295.
|
[9] |
SHIVAKUMAR S S, NGUYEN T, MILLER I D, et al. Dfusenet: Deep fusion of RGB and sparse depth information for image guided dense depth completion[C]. 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019: 13–20.
|
[10] |
LEE S, LEE J, KIM D, et al. Deep architecture with cross guidance between single image and sparse LiDAR data for depth completion[J]. IEEE Access, 2020, 8: 79801–79810. doi: 10.1109/ACCESS.2020.2990212
|
[11] |
QIU Jiaxiong, CUI Zhaopeng, ZHANG Yinda, et al. DeepLiDAR: Deep surface normal guided depth prediction for outdoor scene from sparse LiDAR data and single color image[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 3313–3322.
|
[12] |
徐从安, 吕亚飞, 张筱晗, 等. 基于双重注意力机制的遥感图像场景分类特征表示方法[J]. 电子与信息学报, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
XU Cong’an, LÜ Yafei, ZHANG Xiaohan, et al. A discriminative feature representation method based on dual attention mechanism for remote sensing image scene classification[J]. Journal of Electronics &Information Technology, 2021, 43(3): 683–691. doi: 10.11999/JEIT200568
|
[13] |
周勇, 王瀚正, 赵佳琦, 等. 基于可解释注意力部件模型的行人重识别方法[J/OL]. 自动化学报, 1–16. https://doi.org/10.16383/j.aas.c200493, 2020.
ZHOU Yong, WANG Hanzheng, ZHAO Jiaqi, et al. Interpretable attention part model for person Re-identification[J/OL]. Acta Automatica Sinica, 1–16. https://doi.org/10.16383/j.aas.c200493, 2020.
|
[14] |
MA Benteng, ZHANG Jing, XIA Yong, et al. Auto learning attention[C/OL]. Advances in Neural Information Processing Systems 33, online, 2020.
|
[15] |
ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 294–310.
|
[16] |
张帅勇, 刘美琴, 姚超, 等. 分级特征反馈融合的深度图像超分辨率重建[J/OL]. 自动化学报, 1–13. https://doi.org/10.16383/j.aas.c200542, 2020.
ZHANG Shuaiyong, LIU Meiqin, YAO Chao, et al. Hierarchical feature feedback network for depth super-resolution reconstruction[J/OL]. Acta Automatica Sinica, 1–13. https://doi.org/10.16383/j.aas.c200542, 2020.
|
[17] |
UHRIG J, SCHNEIDER N, SCHNEIDER L, et al. Sparsity invariant CNNs[C]. 2017 International Conference on 3D Vision (3DV), Qingdao, China, 2017: 11–20.
|
[18] |
XU Yan, ZHU Xinge, SHI Jianping, et al. Depth completion from sparse LiDAR data with depth-normal constraints[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2811–2820.
|
[19] |
ELDESOKEY A, FELSBERG M, and KHAN F S. Confidence propagation through CNNs for guided sparse depth regression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2423–2436. doi: 10.1109/TPAMI.2019.2929170
|
[20] |
HEKMATIAN H, JIN Jingfu, and AL-STOUHI S. Conf-net: Toward high-confidence dense 3D point-cloud with error-map prediction[J]. arXiv: 1907.10148, 2019.
|
[21] |
CHENG Xinjing, WANG Peng, and YANG Ruigang. Learning depth with convolutional spatial propagation network[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2361–2379. doi: 10.1109/TPAMI.2019.2947374
|
[22] |
ZHANG Yilun, NGUYEN T, MILLER I D, et al. DFineNet: Ego-motion estimation and depth refinement from sparse, noisy depth input with RGB guidance[J]. arXiv: 1903.06397, 2019.
|
[23] |
SCHUSTER R, WASENMÜLlER O, UNGER C, et al. SSGP: Sparse spatial guided propagation for robust and generic interpolation[C]. 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 197–206.
|