Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHANG Jianhang, KANG Kai, QIAN Hua, YANG Miao. UAV Trajectory Planning Based on Deep Q-Networkfor Internet of Things[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3850-3857. doi: 10.11999/JEIT210962
Citation: ZHANG Jianhang, KANG Kai, QIAN Hua, YANG Miao. UAV Trajectory Planning Based on Deep Q-Networkfor Internet of Things[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3850-3857. doi: 10.11999/JEIT210962

UAV Trajectory Planning Based on Deep Q-Networkfor Internet of Things

doi: 10.11999/JEIT210962
Funds:  The National Key Research and Development Program of China (2020YFB2205603), The National Natural Science Foundation of China (61971286), The Science and Technology Commission Foundation of Shanghai (19DZ1204300)
  • Received Date: 2021-09-09
  • Rev Recd Date: 2021-11-05
  • Available Online: 2022-04-14
  • Publish Date: 2022-11-14
  • With the wide application of Unmanned Aerial Vehicle (UAV), the UAV-assisted Internet of Things (IoT) data collection architecture has expanded IoT’s application scope, which is especially suitable for extreme scenarios like military battlefields or disaster rescue. This paper proposes a UAV trajectory planning algorithm based on Deep Q-Network (DQN) framework for the above scenarios. The proposed algorithm takes the Age of Information (AoI) of collected data in a UAV’s flight cycle as the optimization goal to maintain data freshness. The simulation results show that this algorithm can effectively reduce the average AoI of the collected data. Compared with the random algorithm, the greedy algorithm based on the maximum AoI, the shortest path algorithm and the AoI-based Trajectory Planning (ATP) algorithm, the proposed algorithm can reduce AoI by about 81%, 67%, 56% and 39%, respectively. This paper has realized the efficient and low-latency data collection in the UAV-assisted IoT system.
  • loading
  • [1]
    LI Shancang, XU Lida, and ZHAO Shanshan. The internet of things: A survey[J]. Information Systems Frontiers, 2015, 17(2): 243–259. doi: 10.1007/s10796-014-9492-7
    [2]
    ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328
    [3]
    宋庆恒, 郑福春. 基于无人机的物联网无线通信的潜力与方法[J]. 物联网学报, 2019, 3(1): 82–89. doi: 10.11959/j.issn.2096-3750.2019.00096

    SONG Qingheng and ZHENG Fuchun. Potential and methods of wireless communications for Internet of things based on UAV[J]. Chinese Journal on Internet of Things, 2019, 3(1): 82–89. doi: 10.11959/j.issn.2096-3750.2019.00096
    [4]
    ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933
    [5]
    MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334–2360. doi: 10.1109/COMST.2019.2902862
    [6]
    东方, 吴媚, 朱文捷, 等. 物联网环境下面向能耗优化的无人机飞行规划[J]. 东南大学学报:自然科学版, 2020, 50(3): 555–562. doi: 10.3969/j.issn.1001-0505.2020.03.019

    DONG Fang, WU Mei, ZHU Wenjie, et al. Energy-efficient flight planning for UAV in IoT environment[J]. Journal of Southeast University:Natural Science Edition, 2020, 50(3): 555–562. doi: 10.3969/j.issn.1001-0505.2020.03.019
    [7]
    ZENG Yong, ZHANG Rui, and LIM T J. Throughput maximization for UAV-enabled mobile relaying systems[J]. IEEE Transactions on Communications, 2016, 64(12): 4983–4996. doi: 10.1109/TCOMM.2016.2611512
    [8]
    GONG Jie, CHANG T H, SHEN Chao, et al. Flight time minimization of UAV for data collection over wireless sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 1942–1954. doi: 10.1109/JSAC.2018.2864420
    [9]
    MONWAR M, SEMIARI O, and SAAD W. Optimized path planning for inspection by unmanned aerial vehicles swarm with energy constraints[C]. Proceedings of 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6.
    [10]
    WU Qingqing, ZENG Yong, and ZHANG Rui. Joint trajectory and communication design for multi-UAV enabled wireless networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2109–2121. doi: 10.1109/TWC.2017.2789293
    [11]
    付澍, 杨祥月, 张海君, 等. 物联网数据收集中无人机路径智能规划[J]. 通信学报, 2021, 42(2): 124–133. doi: 10.11959/j.issn.1000-436x.2021036

    FU Shu, YANG Xiangyue, ZHANG Haijun, et al. UAV path intelligent planning in iot data collection[J]. Journal on Communications, 2021, 42(2): 124–133. doi: 10.11959/j.issn.1000-436x.2021036
    [12]
    DONG Yunquan, CHEN Zhengchuan, LIU Shanyun, et al. Age-upon-decisions minimizing scheduling in internet of things: To Be random or to Be deterministic?[J]. IEEE Internet of Things Journal, 2020, 7(2): 1081–1097. doi: 10.1109/JIOT.2019.2950054
    [13]
    KOSTA A, PAPPAS N, and ANGELAKIS V. Age of Information: A new concept, metric, and tool[J]. Foundation and Trends in Networking, 2017, 12(3): 162–259. doi: 10.1561.1300000060
    [14]
    ABD-ELMAGID M A, PAPPAS N, and DHILLON H S. On the role of age of information in the internet of things[J]. IEEE Communications Magazine, 2019, 57(12): 72–77. doi: 10.1109/MCOM.001.1900041
    [15]
    DE BERG M, GUDMUNDSSON J, KATZ M J, et al. TSP with neighborhoods of varying size[J]. Journal of Algorithms, 2005, 57(1): 22–36. doi: 10.1016/j.jalgor.2005.01.010
    [16]
    WANG Chengliang, MA Fei, YAN Junhui, et al. Efficient aerial data collection with UAV in large-scale wireless sensor networks[J/OL]. International Journal of Distributed Sensor Networks, 2015, 11(11).
    [17]
    ALI Z A, MASROOR S, and AAMIR M. UAV based data gathering in wireless sensor networks[J]. Wireless Personal Communications, 2019, 106(4): 1801–1811. doi: 10.1007/s11277-018-5693-6
    [18]
    CHENG C F and YU Chaofu. Data gathering in wireless sensor networks: A combine-TSP-reduce approach[J]. IEEE Transactions on Vehicular Technology, 2016, 65(4): 2309–2324. doi: 10.1109/TVT.2015.2502625
    [19]
    BANDEIRA T W, COUTINHO W P, BRITO A V, et al. Analysis of path planning algorithms based on travelling salesman problem embedded in UAVs[C]. Proceedings of 2015 Brazilian Symposium on Computing Systems Engineering (SBESC), Foz do Iguacu, Brazil, 2015: 70–75.
    [20]
    KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. Proceedings of 2012 IEEE INFOCOM, Orlando, USA, 2012: 2731–2735.
    [21]
    ZHOU Conghao, HE Hongli, YANG Peng, et al. Deep RL-based trajectory planning for AoI minimization in UAV-assisted IoT[C]. Proceedings of the 11th International Conference on Wireless Communications and Signal Processing, Xi'an, China, 2019: 1–6.
    [22]
    MODARES J, GHANEI F, MASTRONARDE N, et al. UB-ANC planner: Energy efficient coverage path planning with multiple drones[C]. Proceedings of 2017 IEEE International Conference on Robotics and Automation, Singapore, 2017: 6182–6189.
    [23]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
    [24]
    SOMASUNDARA A A, RAMAMOORTHY A, and SRIVASTAVA M B. Mobile element scheduling with dynamic deadlines[J]. IEEE Transactions on Mobile Computing, 2007, 6(4): 395–410. doi: 10.1109/TMC.2007.57
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (886) PDF downloads(249) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return