Citation: | ZHUO Li, SUN Liangliang, ZHANG Hui, LI Xiaoguang, ZHANG Jing. TCM Tongue Color Classification Method under Noisy Labeling[J]. Journal of Electronics & Information Technology, 2022, 44(1): 89-98. doi: 10.11999/JEIT210935 |
[1] |
李乃民. 中国舌诊大全[M]. 北京: 学苑出版社, 1994: 30–170.
LI Naimin. Complete Collection of Tongue Diagnosis of Traditional Chinese Medicine[M]. Beijing: Academy Press, 1994: 30–170.
|
[2] |
WANG Xingyuan and WANG Zongyu. A novel method for image retrieval based on structure elements’ descriptor[J]. Journal of Visual Communication and Image Representation, 2013, 24(1): 63–74. doi: 10.1016/j.jvcir.2012.10.003
|
[3] |
WANG Xingyuan, CHEN Zhifeng, and YUN Jiaojiao. An effective method for color image retrieval based on texture[J]. Computer Standards & Interfaces, 2012, 34(1): 31–35. doi: 10.1016/j.csi.2011.05.001
|
[4] |
WANG Chunpeng, WANG Xingyuan, XIA Zhiqiu, et al. Image description with polar harmonic Fourier moments[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4440–4452. doi: 10.1109/TCSVT.2019.2960507
|
[5] |
XIA Zhiqiu, WANG Xingyuan, ZHOU Wenjie, et al. Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms[J]. Signal Processing, 2019, 157: 108–118. doi: 10.1016/j.sigpro.2018.11.011
|
[6] |
WANG Xingyuan and WANG Zongyu. The method for image retrieval based on multi-factors correlation utilizing block truncation coding[J]. Pattern Recognition, 2014, 47(10): 3293–3303. doi: 10.1016/j.patcog.2014.04.020
|
[7] |
王奕然, 张新峰. 基于AdaBoost级联框架的舌色分类[J]. 北京生物医学工程, 2020, 39(1): 8–14. doi: 10.3969/j.issn.1002-3208.2020.01.002
WANG Yiran and ZHANG Xinfeng. Tongue color classification based on AdaBoost cascade framework[J]. Beijing Biomedical Engineering, 2020, 39(1): 8–14. doi: 10.3969/j.issn.1002-3208.2020.01.002
|
[8] |
张艺凡, 胡广芹, 张新峰. 基于支持向量机的痤疮患者舌色苔色识别算法研究[J]. 北京生物医学工程, 2016, 35(1): 7–11. doi: 10.3969/j.issn.1002-3208.2016.01.02
ZHANG Yifan, HU Guangqin, and ZHANG Xinfeng. An algorithm study on tongue color recognition of patients with acne based on support vector machine[J]. Beijing Biomedical Engineering, 2016, 35(1): 7–11. doi: 10.3969/j.issn.1002-3208.2016.01.02
|
[9] |
张静, 张新峰, 王亚真, 等. 多标记学习在中医舌象分类中的研究[J]. 北京生物医学工程, 2016, 35(2): 111–116. doi: 10.3969/j.issn.1002-3208.2016.02.01
ZHANG Jing, ZHANG Xinfeng, WANG Yazhen, et al. Research on multi-label learning in the classification of tongue images in TCM[J]. Beijing Biomedical Engineering, 2016, 35(2): 111–116. doi: 10.3969/j.issn.1002-3208.2016.02.01
|
[10] |
王永刚, 杨杰, 周越. 中医舌象颜色识别的研究[J]. 生物医学工程学杂志, 2005, 22(6): 1116–1120. doi: 10.3321/j.issn:1001-5515.2005.06.008
WANG Yonggang, YANG Jie, and ZHOU Yue. Tongue image color recognition in traditional Chinese medicine[J]. Journal of Biomedical Engineering, 2005, 22(6): 1116–1120. doi: 10.3321/j.issn:1001-5515.2005.06.008
|
[11] |
王爱民, 赵忠旭, 沈兰荪. 中医舌象自动分析中舌色、苔色分类方法的研究[J]. 北京生物医学工程, 2000, 19(3): 136–142. doi: 10.3969/j.issn.1002-3208.2000.03.002
WANG Aimin, ZHAO Zhongxu, and SHEN Lansun. Research on the tongue color classification in automatic tongue analysis of traditional Chinese medicine[J]. Beijing Biomedical Engineering, 2000, 19(3): 136–142. doi: 10.3969/j.issn.1002-3208.2000.03.002
|
[12] |
Hou Jun, Su Hongyi, Yan Bo, et al. Classification of tongue color based on CNN[C]. Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis, Beijing, China, 2017: 725–729.
|
[13] |
FU Shengyu, ZHENG Hong, YANG Zijiang, et al. Computerized tongue coating nature diagnosis using convolutional neural network[C]. The 2017 IEEE 2nd International Conference on Big Data Analysis, Beijing, China, 2017: 730–734.
|
[14] |
肖庆新. 基于深度学习的中医舌象特征分类技术研究[D]. [硕士论文], 北京工业大学, 2019.
XIAO Qingxin. Research on TCM tongue feature classification technology based on deep learning[D]. [Master dissertation], Beijing University of Technology, 2019.
|
[15] |
UNAR S, WANG Xingyuan, and ZHANG Chuan. Visual and textual information fusion using Kernel method for content based image retrieval[J]. Information Fusion, 2018, 44: 176–187. doi: 10.1016/j.inffus.2018.03.006
|
[16] |
UNAR S, WANG Xingyuan, WANG Chunpeng, et al. A decisive content based image retrieval approach for feature fusion in visual and textual images[J]. Knowledge-Based Systems, 2019, 179: 8–20. doi: 10.1016/j.knosys.2019.05.001
|
[17] |
PENG Xiaojiang, WANG Kai, ZENG Zhaoyang, et al. Suppressing mislabeled data via grouping and self-attention[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 786–802.
|
[18] |
NORTHCUTT C G, JIANG Lu, and CHUANG I L. Confident learning: Estimating uncertainty in dataset labels[J]. Journal of Artificial Intelligence Research, 2021, 70: 1373–1411. doi: 10.1613/jair.1.12125
|
[19] |
MA Xingjun, HUANG Hanxun, WANG Yisen, et al. Normalized loss functions for deep learning with noisy labels[C]. The 37th International Conference on Machine Learning, Vienna, Austria, 2020: 6543–6553.
|
[20] |
ZHENG Songzhu, WU Pengxiang, GOSWAMI A, et al. Error-bounded correction of noisy labels[C]. The 37th International Conference on Machine Learning, Vienna, Austria, 2020: 11447–11457.
|
[21] |
YI Kun and WU Jianxin. Probabilistic end-to-end noise correction for learning with noisy labels[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7010–7018.
|
[22] |
WANG Kai, PENG Xiaojiang, YANG Jianfei, et al. Suppressing uncertainties for large-scale facial expression recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6896–6905.
|
[23] |
ZENG Jiabei, SHAN Shiguang, and CHEN Xilin. Facial expression recognition with inconsistently annotated datasets[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 227–243.
|
[24] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
|
[25] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[26] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[27] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
[28] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015: 1409–1556.
|
[29] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520.
|
[30] |
XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5987–5995.
|
[31] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
|
[32] |
MA Ningning, ZHANG Xiangyu, ZHENG Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 122–138.
|
[33] |
TAN Mingxing and LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 6105–6114.
|