Citation: | LUO Yan, WANG Cong, YE Wenling. An Interpretable Prediction Model for Acute Kidney Injury Based on XGBoost and SHAP[J]. Journal of Electronics & Information Technology, 2022, 44(1): 27-38. doi: 10.11999/JEIT210931 |
[1] |
LUNDBERG S M and LEE S I. A unified approach to interpreting model predictions[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4765–4774.
|
[2] |
ZHOU Jiaojiao, LIU Yun, TANG Yi, et al. A comparison of RIFLE, AKIN, KDIGO, and Cys-C criteria for the definition of acute kidney injury in critically ill patients[J]. International Urology and Nephrology, 2016, 48(1): 125–132. doi: 10.1007/s11255-015-1150-6
|
[3] |
KELLUM J A, LAMEIRE N, ASPELIN P, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury[J]. Kidney International Supplements, 2012, 2(1): 1–138. doi: 10.1038/kisup.2012.1
|
[4] |
COCA S G, YUSUF B, SHLIPAK M G, et al. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis[J]. American Journal of Kidney Diseases, 2009, 53(6): 961–973. doi: 10.1053/j.ajkd.2008.11.034
|
[5] |
CHERTOW G M, BURDICK E, HONOUR M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients[J]. Journal of the American Society of Nephrology, 2005, 16(11): 3365–3370. doi: 10.1681/ASN.2004090740
|
[6] |
CHAWLA L S, BELLOMO R, BIHORAC A, et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup[J]. Nature Reviews Nephrology, 2017, 13(4): 241–257. doi: 10.1038/nrneph.2017.2
|
[7] |
KELLUM J A and PROWLE J R. Paradigms of acute kidney injury in the intensive care setting[J]. Nature Reviews Nephrology, 2018, 14(4): 217–230. doi: 10.1038/nrneph.2017.184
|
[8] |
HOSTE E A J and SCHURGERS M. Epidemiology of acute kidney injury: How big is the problem?[J]. Critical Care Medicine, 2008, 36(4): S146–S151.
|
[9] |
ZENG Xiaoxi, MCMAHON G M, BRUNELLI S M, et al. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals[J]. Clinical Journal of the American Society of Nephrology, 2014, 9(1): 12–20. doi: 10.2215/CJN.02730313
|
[10] |
YANG Li, XING Guolan, WANG Li, et al. Acute kidney injury in China: A cross-sectional survey[J]. The Lancet, 2015, 386(10002): 1465–1471. doi: 10.1016/S0140-6736(15)00344-X
|
[11] |
LIBÓRIO A B, LEITE T T, DE OLIVEIRA NEVES F M, et al. AKI complications in critically ill patients: Association with mortality rates and RRT[J]. Clinical Journal of the American Society of Nephrology, 2015, 10(1): 21–28. doi: 10.2215/CJN.04750514
|
[12] |
DE OLIVEIRA MARQUES F, OLIVEIRA S A, DE LIMA E SOUZA P F, et al. Kinetic estimated glomerular filtration rate in critically ill patients: Beyond the acute kidney injury severity classification system[J]. Critical Care, 2017, 21(1): 280. doi: 10.1186/s13054-017-1873-0
|
[13] |
SUSANTITAPHONG P, CRUZ D N, CERDA J, et al. World incidence of AKI: A meta-analysis[J]. Clinical Journal of the American Society of Nephrology, 2013, 8(9): 1482–1493. doi: 10.2215/CJN.00710113
|
[14] |
SRISAWAT N, SILEANU F E, MURUGAN R, et al. Variation in risk and mortality of acute kidney injury in critically ill patients: A multicenter study[J]. American Journal of Nephrology, 2015, 41(1): 81–88. doi: 10.1159/000371748
|
[15] |
DASTA J F and KANE-GILL S. Review of the literature on the costs associated with acute kidney injury[J]. Journal of Pharmacy Practice, 2019, 32(3): 292–302. doi: 10.1177/0897190019852556
|
[16] |
OSTERMANN M, CHANG R, and The Riyadh ICU Program Users Group. Correlation between the AKI classification and outcome[J]. Critical Care, 2008, 12(6): R144. doi: 10.1186/cc7123
|
[17] |
THAKAR C V, CHRISTIANSON A, FREYBERG R, et al. Incidence and outcomes of acute kidney injury in intensive care units: A veterans administration study[J]. Critical Care Medicine, 2009, 37(9): 2552–2558. doi: 10.1097/CCM.0b013e3181a5906f
|
[18] |
SAWHNEY S, MARKS A, FLUCK N, et al. Intermediate and long-term outcomes of survivors of acute kidney injury episodes: A large population-based cohort study[J]. American Journal of Kidney Diseases, 2017, 69(1): 18–28. doi: 10.1053/j.ajkd.2016.05.018
|
[19] |
WANG J H, JOSLIN J, JENKINS R, et al. Outcomes of elderly patients with acute kidney injury on a renal high dependency unit[J]. International Journal of Clinical Practice, 2015, 69(10): 1209–1210. doi: 10.1111/ijcp.12683
|
[20] |
WU V C, WU C H, HUANG T M, et al. Long-term risk of coronary events after AKI[J]. Journal of the American Society of Nephrology, 2014, 25(3): 595–605. doi: 10.1681/ASN.2013060610
|
[21] |
VILLENEUVE P M, CLARK E G, SIKORA L, et al. Health-related quality-of-life among survivors of acute kidney injury in the intensive care unit: A systematic review[J]. Intensive Care Medicine, 2016, 42(2): 137–146. doi: 10.1007/s00134-015-4151-0
|
[22] |
LIN Ke, HU Yonghua, and KONG Guilan. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model[J]. International Journal of Medical Informatics, 2019, 125: 55–61. doi: 10.1016/j.ijmedinf.2019.02.002
|
[23] |
PONCE D, DE PIETRO FRANCO ZORZENON C, DOS SANTOS N Y, et al. Early nephrology consultation can have an impact on outcome of acute kidney injury patients[J]. Nephrology Dialysis Transplantation, 2011, 26(10): 3202–3206. doi: 10.1093/ndt/gfr359
|
[24] |
FLECHET M, FALINI S, BONETTI C, et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: A prospective evaluation of the AKIpredictor[J]. Critical Care, 2019, 23(1): 282. doi: 10.1186/s13054-019-2563-x
|
[25] |
ANDREU-PEREZ J, POON C C Y, MERRIFIELD R D, et al. Big data for health[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(4): 1193–1208. doi: 10.1109/JBHI.2015.2450362
|
[26] |
XIAO Cao, CHOI E, and SUN Jimeng. Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review[J]. Journal of the American Medical Informatics Association, 2018, 25(10): 1419–1428. doi: 10.1093/jamia/ocy068
|
[27] |
GONG Kaidi, LEE H K, YU Kaiye, et al. A prediction and interpretation framework of acute kidney injury in critical care[J]. Journal of Biomedical Informatics, 2021, 113: 103653. doi: 10.1016/j.jbi.2020.103653
|
[28] |
TOMAŠEV N, GLOROT X, RAE J W, et al. A clinically applicable approach to continuous prediction of future acute kidney injury[J]. Nature, 2019, 572(7767): 116–119. doi: 10.1038/s41586-019-1390-1
|
[29] |
FLECHET M, GÜIZA F, SCHETZ M, et al. AKIpredictor, an online prognostic calculator for acute kidney injury in adult critically ill patients: Development, validation and comparison to serum neutrophil gelatinase-associated lipocalin[J]. Intensive Care Medicine, 2017, 43(6): 764–773. doi: 10.1007/s00134-017-4678-3
|
[30] |
MOHAMADLOU H, LYNN-PALEVSKY A, BARTON C, et al. Prediction of acute kidney injury with a machine learning algorithm using electronic health record data[J]. Canadian Journal of Kidney Health and Disease, 2018, 5: 1–9.
|
[31] |
LEI V J, LUONG T, SHAN E, et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data[J]. JAMA Network Open, 2019, 2(12): e1916921. doi: 10.1001/jamanetworkopen.2019.16921
|
[32] |
KOYNER J L, CAREY K A, EDELSON D P, et al. The development of a machine learning inpatient acute kidney injury prediction model[J]. Critical Care Medicine, 2018, 46(7): 1070–1077. doi: 10.1097/CCM.0000000000003123
|
[33] |
CHURPEK M M, CAREY K A, EDELSON D P, et al. Internal and external validation of a machine learning risk score for acute kidney injury[J]. JAMA Network Open, 2020, 3(8): e2012892. doi: 10.1001/jamanetworkopen.2020.12892
|
[34] |
SIMONOV M, UGWUOWO U, MOREIRA E, et al. A simple real-time model for predicting acute kidney injury in hospitalized patients in the US: A descriptive modeling study[J]. PLoS Medicine, 2019, 16(7): e1002861. doi: 10.1371/journal.pmed.1002861
|
[35] |
XU Zhenxing, LUO Yuan, ADEKKANATTU P, et al. Stratified mortality prediction of patients with acute kidney injury in critical care[J]. Studies in Health Technology and Informatics, 2019, 264: 462–466.
|
[36] |
ZIMMERMAN L P, REYFMAN P A, SMITH A D R, et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements[J]. BMC Medical Informatics and Decision Making, 2019, 19(S1): 16. doi: 10.1186/s12911-019-0733-z
|
[37] |
RASHIDI H H, SEN S, PALMIERI T L, et al. Early recognition of burn- and trauma-related acute kidney injury: A pilot comparison of machine learning techniques[J]. Scientific Reports, 2020, 10(1): 205. doi: 10.1038/s41598-019-57083-6
|
[38] |
JOHNSON A E W, POLLARD T J, SHEN Lu, et al. MIMIC-III, a freely accessible critical care database[J]. Scientific Data, 2016, 3: 160035. doi: 10.1038/sdata.2016.35
|
[39] |
RALIB A, PICKERING J W, SHAW G M, et al. The urine output definition of acute kidney injury is too liberal[J]. Critical Care, 2013, 17(3): R112. doi: 10.1186/cc12784
|
[40] |
RAZAVIAN N and SONTAG D. Temporal convolutional neural networks for diagnosis from lab tests[J]. arXiv preprint arXiv: 1511.07938, 2015.
|
[41] |
HAN Hui, WANG Wenyuan, and MAO Binghuan. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning[C]. 2005 International Conference on Intelligent Computing, Hefei, China, 2005: 878–887.
|
[42] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321–357. doi: 10.1613/jair.953
|
[43] |
CHEN Tianqi and GUESTRIN C. Xgboost: A scalable tree boosting system[C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785–794.
|
[44] |
NGUYEN H, BUI X N, BUI H B, et al. Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: A case study[J]. Acta Geophysica, 2019, 67(2): 477–490. doi: 10.1007/s11600-019-00268-4
|
[45] |
MA Xiaojun, SHA Jinglan, WANG Dehua, et al. Study on a prediction of P2P network loan default based on the machine learning LightGBM and XGboost algorithms according to different high dimensional data cleaning[J]. Electronic Commerce Research and Applications, 2018, 31: 24–39. doi: 10.1016/j.elerap.2018.08.002
|
[46] |
MOUSA S R, BAKHIT P R, and ISHAK S. An extreme gradient boosting method for identifying the factors contributing to crash/near-crash events: A naturalistic driving study[J]. Canadian Journal of Civil Engineering, 2019, 46(8): 712–721. doi: 10.1139/cjce-2018-0117
|
[47] |
SYARIF I, PRUGEL-BENNETT A, WILLS G. SVM parameter optimization using grid search and genetic algorithm to improve classification performance[J]. Telkomnika, 2016, 14(4): 1502–1509. doi: 10.12928/telkomnika.v14i4.3956
|
[48] |
ARLOT S and LERASLE M. Choice of V for V-fold cross-validation in least-squares density estimation[J]. The Journal of Machine Learning Research, 2016, 17(1): 7256–7305.
|
[49] |
HANLEY J A and MCNEIL B J. The meaning and use of the area under a receiver operating characteristic (ROC) curve[J]. Radiology, 1982, 143(1): 29–36. doi: 10.1148/radiology.143.1.7063747
|
[50] |
FLACH P, HERNÁNDEZ-ORALLO J, and FERRI C. A coherent interpretation of AUC as a measure of aggregated classification performance[C]. Proceedings of the 28th International Conference on International Conference on Machine Learning, Bellevue, USA, 2011.
|
[51] |
WILSON F P. Machine learning to predict acute kidney injury[J]. American Journal of Kidney Diseases, 2020, 75(6): 965–967. doi: 10.1053/j.ajkd.2019.08.010
|
[52] |
ŠTRUMBELJ E and KONONENKO I. Explaining prediction models and individual predictions with feature contributions[J]. Knowledge and Information Systems, 2014, 41(3): 647–665. doi: 10.1007/s10115-013-0679-x
|
[53] |
RIBEIRO M T, SINGH S, and GUESTRIN C. "Why should I trust you?": Explaining the predictions of any classifier[C]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 1135–1144.
|
[54] |
LUNDBERG S M, NAIR B, VAVILALA M S, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery[J]. Nature Biomedical Engineering, 2018, 2(10): 749–760. doi: 10.1038/s41551-018-0304-0
|
[55] |
LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56–67. doi: 10.1038/s42256-019-0138-9
|
[56] |
PARSA A B, MOVAHEDI A, TAGHIPOUR H, et al. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis[J]. Accident Analysis & Prevention, 2020, 136: 105405.
|
[57] |
LI Yikuan, YAO Liang, MAO Chengsheng, et al. Early prediction of acute kidney injury in critical care setting using clinical notes[C]. Proceedings of 2018 IEEE International Conference on Bioinformatics and Biomedicine, Madrid, Spain, 2018: 683–686.
|
[58] |
BASILE D P, ANDERSON M D, and SUTTON T A. Pathophysiology of acute kidney injury[J]. Comprehensive Physiology, 2012, 2(2): 1303–1353.
|
[59] |
SØVIK S, ISACHSEN M S, NORDHUUS K M, et al. Acute kidney injury in trauma patients admitted to the ICU: A systematic review and meta-analysis[J]. Intensive Care Medicine, 2019, 45(4): 407–419. doi: 10.1007/s00134-019-05535-y
|
[60] |
OH H J, SHIN D H, LEE M J, et al. Urine output is associated with prognosis in patients with acute kidney injury requiring continuous renal replacement therapy[J]. Journal of Critical Care, 2013, 28(4): 379–388. doi: 10.1016/j.jcrc.2012.11.019
|
[61] |
HUSSEIN R H, CALICE-SILVA V, EVANS R, et al. Diagnosis of acute kidney injury in children hospitalized in a sub-saharan african unit by saliva urea nitrogen dipstick test[J]. Blood Purification, 2020, 49(1/2): 185–196.
|
[62] |
SHAWWA K, GHOSH E, LANIUS S, et al. Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning[J]. Clinical Kidney Journal, 2021, 14(5): 1428–1435. doi: 10.1093/ckj/sfaa145
|
[63] |
SUN Mengxin, BARON J, DIGHE A, et al. Early prediction of acute kidney injury in critical care setting using clinical notes and structured multivariate physiological measurements[J]. Studies in Health Technology and Informatics, 2019, 264: 368–372.
|
[64] |
CHEN Daonan, DU Jiang, XIE Yun, et al. Relationship between early serum sodium and potassium levels and AKI severity and prognosis in oliguric AKI patients[J]. International Urology and Nephrology, 2021, 53(6): 1171–1187. doi: 10.1007/s11255-020-02724-3
|
[65] |
HURSH B E, RONSLEY R, ISLAM N, et al. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis[J]. JAMA Pediatrics, 2017, 171(5): e170020. doi: 10.1001/jamapediatrics.2017.0020
|
[66] |
KUMAR I E, VENKATASUBRAMANIAN S, SCHEIDEGGER C, et al. Problems with shapley-value-based explanations as feature importance measures[C]. Proceedings of the 37th International Conference on Machine Learning, 2020: 5491–5500.
|
[67] |
BELLOMO R, KELLUM J A, and RONCO C. Acute kidney injury[J]. The Lancet, 2012, 380(9843): 756–766. doi: 10.1016/S0140-6736(11)61454-2
|