Citation: | BAN Xiaojuan, WANG Jiamin, WANG Xiaokun, ZHANG Yalan, XU Yanrui, SONG Chongming, HUANG Houbin, ZHU Zhihong. A Computer Simulation and Visualization Method of Intraocular Silicone Oil Emulsification Process of Silicone Oil Tamponade[J]. Journal of Electronics & Information Technology, 2022, 44(1): 18-26. doi: 10.11999/JEIT210919 |
[1] |
金琴辉, 张昕, 杨友谊. 硅油眼内填充后对视网膜及视神经的影响[J]. 中国眼耳鼻喉科杂志, 2019, 19(3): 212–216. doi: 10.14166/j.issn.1671-2420.2019.03.022
JIN Qinhui, ZHANG Xin, and YANG Youyi. Effects of intraocular tamponade with silicone oil on retina and optic nerve[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2019, 19(3): 212–216. doi: 10.14166/j.issn.1671-2420.2019.03.022
|
[2] |
何勤, 柯根杰. 硅油填充术后早期硅油进入前房的临床分析及处理[J]. 临床眼科杂志, 2020, 28(4): 316–318. doi: 10.3969/j.issn.1006-8422.2020.04.007
HE Qin and KE Genjie. Analysis and treatment of the clinical characteristics of early silicone oil entering the anterior chamber after silicone oil filling[J]. Journal of Clinical Ophthalmology, 2020, 28(4): 316–318. doi: 10.3969/j.issn.1006-8422.2020.04.007
|
[3] |
蔡轶珩, 高旭蓉, 邱长炎, 等. 一种混合特征高效融合的视网膜血管分割方法[J]. 电子与信息学报, 2017, 39(8): 1956–1963. doi: 10.11999/JEIT161290
CAI Yiheng, GAO Xurong, QIU Changyan, et al. Retinal vessel segmentation method with efficient hybrid features fusion[J]. Journal of Electronics &Information Technology, 2017, 39(8): 1956–1963. doi: 10.11999/JEIT161290
|
[4] |
陈强, 徐军, 牛四杰. 基于随机森林的频谱域光学相干层析技术的图像视网膜神经纤维层分割[J]. 电子与信息学报, 2017, 39(5): 1101–1108. doi: 10.11999/JEIT160663
CHEN Qiang, XU Jun, and NIU Sijie. Retinal nerve fiber layer segmentation of spectral domain optical coherence tomography images based on random forest[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1101–1108. doi: 10.11999/JEIT160663
|
[5] |
徐衍睿, 班晓娟, 王笑琨, 等. 面向视网膜脱离手术的硅油填充模拟[J]. 工程科学学报, 2021, 43(9): 1233–1243. doi: 10.13374/j.issn2095-9389.2021.01.13.006
XU Yanrui, BAN Xiaojuan, WANG Xiaokun, et al. Simulations of silicone oil filling for use in retinal detachment surgery[J]. Chinese Journal of Engineering, 2021, 43(9): 1233–1243. doi: 10.13374/j.issn2095-9389.2021.01.13.006
|
[6] |
BARGTEIL A W, SHINAR T, and KRY P G. An introduction to physics-based animation[C]. SIGGRAPH Asia 2020 Courses, 2020: 1–57.
|
[7] |
RAO Chengping, SUN Hao, and LIU Yang. Physics-informed deep learning for incompressible laminar flows[J]. Theoretical and Applied Mechanics Letters, 2020, 10(3): 207–212. doi: 10.1016/j.taml.2020.01.039
|
[8] |
张雅斓, 班晓娟, 徐衍睿, 等. 面向非牛顿流体仿真的边界处理方法[J]. 计算机辅助设计与图形学学报, 2019, 31(8): 1341–1349. doi: 10.3724/SP.J.1089.2019.17576
ZHANG Yalan, BAN Xiaojuan, XU Yanrui, et al. Boundary handling for Non-Newtonian fluid simulation[J]. Journal of Computer-Aided Design &Computer Graphics, 2019, 31(8): 1341–1349. doi: 10.3724/SP.J.1089.2019.17576
|
[9] |
SKRIVAN T, SODERSTROM A, JOHANSSON J, et al. Wave curves: Simulating lagrangian water waves on dynamically deforming surfaces[J]. ACM Transactions on Graphics, 2020, 39(4): 65. doi: 10.1145/3386569.3392466
|
[10] |
MONAGHAN J J. Smoothed particle hydrodynamics[J]. Reports on Progress in Physics, 2005, 68(8): 1703–1759. doi: 10.1088/0034-4885/68/8/R01
|
[11] |
BECKER M and TESCHNER M. Weakly compressible SPH for free surface flows[C]. 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, USA, 2007: 209–217.
|
[12] |
SOLENTHALER B and PAJAROLA R. Predictive-corrective incompressible SPH[J]. ACM Transactions on Graphics, 2009, 28(3): 40. doi: 10.1145/1531326.1531346
|
[13] |
IHMSEN M, CORNELIS J, SOLENTHALER B, et al. Implicit Incompressible SPH[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20(3): 426–435. doi: 10.1109/TVCG.2013.105
|
[14] |
BENDER J and KOSCHIER D. Divergence-free smoothed particle hydrodynamics[C]. The 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, USA, 2015: 147–155.
|
[15] |
WANG Xiaokun, LIU Sinuo, BAN Xiaojuan, et al. Robust turbulence simulation for particle-based fluids using the Rankine vortex model[J]. The Visual Computer, 2020, 36(10): 2285–2298. doi: 10.1007/s00371-020-01914-5
|
[16] |
LIU Sinuo, WANG Xiaokun, BAN Xiaojuan, et al. Turbulent details simulation for SPH Fluids via Vorticity refinement[J]. Computer Graphics Forum, 2021, 40(1): 54–67. doi: 10.1111/cgf.14095
|
[17] |
MÜLLER M, SOLENTHALER B, KEISER R, et al. Particle-based fluid-fluid interaction[C]. 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, Los Angeles, USA, 2005: 237–244.
|
[18] |
LIU Shiguang, LIU Qiguang, and PENG Qunsheng. Realistic simulation of mixing fluids[J]. The Visual Computer, 2011, 27(3): 241–248. doi: 10.1007/s00371-010-0531-1
|
[19] |
REN Bo, LI Chenfeng, YAN Xiao, et al. Multiple-fluid SPH Simulation using a mixture model[J]. ACM Transactions on Graphics, 2014, 33(5): 171. doi: 10.1145/2645703
|
[20] |
YANG Tao, CHANG Jian, REN Bo, et al. Fast multiple-fluid simulation using Helmholtz free energy[J]. ACM Transactions on Graphics, 2015, 34(6): 201. doi: 10.1145/2816795.2818117
|
[21] |
YAN Xiao, JIANG Yuntao, LI Chenfeng, et al. Multiphase SPH simulation for interactive fluids and solids[J]. ACM Transactions on Graphics, 2016, 35(4): 79. doi: 10.1145/2897824.2925897
|
[22] |
JIANG Y, LI C, DENG S, et al. A divergence-free mixture model for multiphase fluids[J]. Computer Graphics Forum, 2020, 39(8): 69–77. doi: 10.1111/cgf.14102
|
[23] |
BAND S, GISSLER C, IHMSEN M, et al. Pressure boundaries for implicit incompressible SPH[J]. ACM Transactions on Graphics, 2018, 37(2): 14. doi: 10.1145/3180486
|
[24] |
AKINCI N, AKINCI G, and TESCHNER M. Versatile surface tension and adhesion for SPH fluids[J]. ACM Transactions on Graphics, 2013, 32(6): 182. doi: 10.1145/2508363.2508395
|
[25] |
MANNINEN M, TAIVASSALO V, and KALLIO S. On the mixture model for multiphase flow[R]. VTT Publications 288, 1996.
|
[26] |
王笑琨, 班晓娟, 刘旭, 等. 面向SPH流体的高效各向异性表面重构算法[J]. 计算机辅助设计与图形学学报, 2016, 28(9): 1497–1505.
WANG Xiaokun, BAN Xiaojuan, LIU Xu, et al. Effective reconstructing surfaces algorithm of anisotropic kernels orienting SPH fluids[J] Journal of Computer-Aided Design & Computer Graphics, 2016, 28(9): 1497–1505.
|