Citation: | ZHANG Taohong, GUO Xuxu, ZHANG Ying. LRSAR-Net Semantic Segmentation Model for Computer Aided Diagnosis for Covid-19 CT Image[J]. Journal of Electronics & Information Technology, 2022, 44(1): 48-58. doi: 10.11999/JEIT210917 |
[1] |
MUNUSAMY H, MUTHUKUMAR K J, GNANAPRAKASAM S, et al. FractalCovNet architecture for COVID-19 Chest X-ray image classification and CT-scan image Segmentation[J]. Biocybernetics and Biomedical Engineering, 2021, 41(3): 1025–1038. doi: 10.1016/j.bbe.2021.06.011
|
[2] |
ILESANMI A E, CHAUMRATTANAKUL U, and MAKHANOV S S. A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning[J]. Biocybernetics and Biomedical Engineering, 2021, 41(2): 802–818. doi: 10.1016/j.bbe.2021.05.007
|
[3] |
HAMBARDE P, TALBAR S, MAHAJAN A, et al. Prostate lesion segmentation in MR images using radiomics based deeply supervised U-Net[J]. Biocybernetics and Biomedical Engineering, 2020, 40(4): 1421–1435. doi: 10.1016/j.bbe.2020.07.011
|
[4] |
KHANNA A, LONDHE N D, GUPTA S, et al. A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images[J]. Biocybernetics and Biomedical Engineering, 2020, 40(3): 1314–1327. doi: 10.1016/j.bbe.2020.07.007
|
[5] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
|
[6] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7794–7803.
|
[7] |
LI Chen, TAN Yusong, CHEN Wei, et al. ANU-Net: Attention-based nested U-Net to exploit full resolution features for medical image segmentation[J]. Computers & Graphics, 2020, 90: 11–20. doi: 10.1016/j.cag.2020.05.003
|
[8] |
FAN Dengping, ZHOU Tao, JI Gepeng, et al. Inf-Net: Automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626–2637. doi: 10.1109/TMI.2020.2996645
|
[9] |
LIU Zhihua, TONG Lei, CHEN Long, et al. CANet: Context aware network for brain glioma segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(7): 1763–1777. doi: 10.1109/TMI.2021.3065918
|
[10] |
DOU Haoran, KARIMI D, ROLLINS C K, et al. A deep attentive convolutional neural network for automatic cortical plate segmentation in fetal MRI[J]. IEEE Transactions on Medical Imaging, 2021, 40(4): 1123–1133. doi: 10.1109/TMI.2020.3046579
|
[11] |
JIANG Yi, CHEN Weixun, LIU Min, et al. 3D neuron microscopy image segmentation via the ray-shooting model and a DC-BLSTM network[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 26–37. doi: 10.1109/TMI.2020.3021493
|
[12] |
ZHANG Yuqiang, LIU Min, YU Fuhao, et al. An O-shape neural network with attention modules to detect junctions in biomedical images without segmentation[J]. IEEE Journal of Biomedical and Health Informatics, To be published.
|
[13] |
CHEN Jieneng, LU Yongyi, YU Qihang, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv: 2102.04306, 2021.
|
[14] |
KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
|
[15] |
LEBEDEV V, GANIN Y, RAKHUBA M, et al. Speeding-up convolutional neural networks using fine-tuned CP-decomposition[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[16] |
WU Jia’nan. Compression of fully-connected layer in neural network by Kronecker product[C]. Proceedings of 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI), Chiang Mai, Thailand, 2016: 173–179.
|
[17] |
SUN Weize, CHEN Shaowu, HUANG Lei, et al. Deep convolutional neural network compression via coupled tensor decomposition[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(3): 603–616. doi: 10.1109/JSTSP.2020.3038227
|
[18] |
CHEN Wanli, ZHU Xinge, SUN Ruoqi, et al. Tensor low-rank reconstruction for semantic segmentation[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 52–69.
|
[19] |
ZHANG Yanbo, MOU Xuanqin, WANG Ge, et al. Tensor-based dictionary learning for spectral CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2017, 36(1): 142–154. doi: 10.1109/TMI.2016.2600249
|
[20] |
WU Weiwen, LIU Fenglin, ZHANG Yanbo, et al. Non-local low-rank cube-based tensor factorization for spectral CT reconstruction[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 1079–1093. doi: 10.1109/TMI.2018.2878226
|
[21] |
HATVANIY J, MICHETTI J, BASARAB A, et al. Single image super-resolution of noisy 3d dental Ct images using tucker decomposition[C]. Proceedings of 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 2021: 1673–1676.
|
[22] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
|
[23] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[24] |
JENSSEN H B. COVID-19 CT segmentation dataset[EB/OL]. http://medicalsegmentation.com/ covid19/, 2020.
|
[25] |
MedSeg[EB/OL].https://www.medseg.ai/.
|
[26] |
KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[27] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510–4520.
|
[28] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
|
[29] |
CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 1800–1807.
|
[30] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015.
|
[31] |
ZHOU Zongwei, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6): 1856–1867. doi: 10.1109/TMI.2019.2959609
|
[32] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv: 1706.05587, 2017.
|
[33] |
CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 2018.
|
[34] |
ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6230–6239.
|