Citation: | ZHOU Tao, LIU Yuncan, LU Huiling, YE Xinyu, CHANG Xiaoyu. ResNet and Its Application to Medical Image Processing: Research Progress and Challenges[J]. Journal of Electronics & Information Technology, 2022, 44(1): 149-167. doi: 10.11999/JEIT210914 |
[1] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, United States, 2012: 1106–1114.
|
[2] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, United States, 2015: 1–14.
|
[3] |
杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
YANG Shuying, GUI Binbin, and CHEN Shengyong. Arrhythmia detection based on wavelet decomposition and 1D-GoogLeNet[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
|
[4] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[5] |
周涛, 霍兵强, 陆惠玲, 等. 残差神经网络及其在医学图像处理中的应用研究[J]. 电子学报, 2020, 48(7): 1436–1447. doi: 10.3969/j.issn.0372-2112.2020.07.024
ZHOU Tao, HUO Bingqiang, LU Huiling, et al. Research on residual neural network and its application on medical image processing[J]. Acta Electronica Sinica, 2020, 48(7): 1436–1447. doi: 10.3969/j.issn.0372-2112.2020.07.024
|
[6] |
WU Nan, PHANG J, PARK J, et al. Deep neural networks improve radiologists' performance in breast cancer screening[J]. IEEE Transactions on Medical Imaging, 2020, 39(4): 1184–1194. doi: 10.1109/TMI.2019.2945514
|
[7] |
KARTHIK R, MENAKA R, and HARIHARAN M. Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN[J]. Applied Soft Computing, 2021, 99: 106744. doi: 10.1016/j.asoc.2020.106744
|
[8] |
LU Yan, QIN Xuejun, FAN Haoyi, et al. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet[J]. Applied Soft Computing, 2021, 101: 107006. doi: 10.1016/j.asoc.2020.107006
|
[9] |
NAZIR A, CHEEMA M N, SHENG Bin, et al. OFF-eNET: An optimally fused fully end-to-end network for automatic dense volumetric 3D intracranial blood vessels segmentation[J]. IEEE Transactions on Image Processing, 2020, 29: 7192–7202. doi: 10.1109/TIP.2020.2999854
|
[10] |
MA Danying, SHANG Linwei, TANG Jinlan, et al. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 256: 119732. doi: 10.1016/j.saa.2021.119732
|
[11] |
FANG Lingling and WANG Xin. COVID-19 deep classification network based on convolution and deconvolution local enhancement[J]. Computers in Biology and Medicine, 2021, 135: 104588. doi: 10.1016/j.compbiomed.2021.104588
|
[12] |
ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6848–6856.
|
[13] |
CAO Feilong and GUO Wenhui. Deep hybrid dilated residual networks for hyperspectral image classification[J]. Neurocomputing, 2020, 384: 170–181. doi: 10.1016/j.neucom.2019.11.092
|
[14] |
LIN Min, CHEN Qiang, and YAN Shuicheng. Network in network[EB/OL].https://arxiv.org/abs/1312.4400, 2013.
|
[15] |
LU Zhenyu, BAI Yanzhong, CHEN Yi, et al. The classification of gliomas based on a Pyramid dilated convolution resnet model[J]. Pattern Recognition Letters, 2020, 133: 173–179. doi: 10.1016/j.patrec.2020.03.007
|
[16] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2818–2826.
|
[17] |
YAN Jining, MU Lin, WANG Lizhe, et al. Temporal convolutional networks for the advance prediction of ENSO[J]. Scientific Reports, 2020, 10(1): 8055. doi: 10.1038/s41598-020-65070-5
|
[18] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017.
|
[19] |
PRASETYO E, SUCIATI N, and FATICHAH C. Multi-level residual network VGGNet for fish species classification[J]. Journal of King Saud University-Computer and Information Sciences, To be published.
|
[20] |
DAI Jifeng, QI Haozhi, XIONG Yuwen, et al. Deformable convolutional networks[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764–773.
|
[21] |
SIKDAR A and CHOWDHURY A S. Scale-invariant batch-adaptive residual learning for person re-identification[J]. Pattern Recognition Letters, 2020, 129: 279–286. doi: 10.1016/j.patrec.2019.11.032
|
[22] |
LIU Xuejing, LI Liang, WANG Shuhui, et al. Local-binarized very deep residual network for visual categorization[J]. Neurocomputing, 2021, 430: 82–93. doi: 10.1016/j.neucom.2020.11.041
|
[23] |
LOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 448–456.
|
[24] |
LOFFE S. Batch renormalization: Towards reducing minibatch dependence in batch-normalized models[C]. The 30th International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1945–1953.
|
[25] |
TIAN Chunwei, XU Yong, and ZUO Wangmeng. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 2020, 121: 461–473. doi: 10.1016/j.neunet.2019.08.022
|
[26] |
BA J L, KIROS J R, and HINTON G E. Layer normalization[EB/OL].https://arxiv.org/abs/1607.06450, 2016.
|
[27] |
王志扬, 袁旭, 沈项军, 等. 深度网络去相关层归一化技术研究[J]. 小型微型计算机系统, 2021: 1–8. doi: 10.3969/j.issn.1000-1220.2021.01.001
WANG Zhiyang, YUAN Xu, SHEN Xiangjun, et al. Research on decorrelate layer normalization in deep network[J]. Journal of Chinese Computer Systems, 2021: 1–8. doi: 10.3969/j.issn.1000-1220.2021.01.001
|
[28] |
ULYANOV D, VEDALDI A, and LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL].https://arxiv.org/abs/1607.08022v3, 2016.
|
[29] |
CASELLA A, MOCCIA S, PALADINI D, et al. A shape-constraint adversarial framework with instance-normalized spatio-temporal features for inter-fetal membrane segmentation[J]. Medical Image Analysis, 2021, 70: 102008. doi: 10.1016/j.media.2021.102008
|
[30] |
WU Yuxin and HE Kaiming. Group normalization[J]. International Journal of Computer Vision, 2020, 128(3): 742–755. doi: 10.1007/s11263-019-01198-w
|
[31] |
LUO Ping, REN Jiamin, PENG Zhanglin, et al. Differentiable learning-to-normalize via switchable normalization[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[32] |
ZHONG Zhen, XIAO Guobao, ZENG Kun, et al. TSSN-Net: Two-step sparse switchable normalization for learning correspondences with heavy outliers[J]. Neurocomputing, 2021, 452: 159–168. doi: 10.1016/j.neucom.2021.04.093
|
[33] |
SALIMANS T and KINGMA D P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 901–909.
|
[34] |
HUANG Lei, LIU Xianglong, QIN Jie, et al. Projection based weight normalization: Efficient method for optimization on oblique manifold in DNNs[J]. Pattern Recognition, 2020, 105: 107317. doi: 10.1016/j.patcog.2020.107317
|
[35] |
GLOROT X, BORDES A, and BENGIO Y. Deep sparse rectifier neural networks[C]. The 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2011: 315–323.
|
[36] |
XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL].https://arxiv.org/abs/1505.00853v2, 2015.
|
[37] |
JIANG Xiaoheng, PANG Yanwei, LI Xuelong, et al. Deep neural networks with elastic rectified linear units for object recognition[J]. Neurocomputing, 2018, 275: 1132–1139. doi: 10.1016/j.neucom.2017.09.056
|
[38] |
SHANG Wenling, SOHN K, ALMEIDA D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]. The 33rd International Conference on Machine Learning, New York, USA, 2016.
|
[39] |
CLEVERT D, UNTERTHINER T, and HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]. The 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
|
[40] |
KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-Normalizing neural networks[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 972–981.
|
[41] |
TROTTIER L, GIGUERE P, and CHAIB-DRAA B. Parametric exponential linear unit for deep convolutional neural networks[C]. 2017 16th IEEE International Conference on Machine Learning and Applications, Cancun, Mexico, 2017: 207–214.
|
[42] |
BARRON J T. Continuously differentiable exponential linear units[EB/OL].https://arxiv.org/abs/1704.07483, 2017.
|
[43] |
KIM D, KIM J, and KIM J. Elastic exponential linear units for convolutional neural networks[J]. Neurocomputing, 2020, 406: 253–266. doi: 10.1016/j.neucom.2020.03.051
|
[44] |
LI Yang, FAN Chunxiao, LI Yong, et al. Improving deep neural network with multiple parametric exponential linear Units[J]. Neurocomputing, 2018, 301: 11–24. doi: 10.1016/j.neucom.2018.01.084
|
[45] |
CHENG Qishang, LI HongLiang, WU Qingbo, et al. Parametric deformable exponential linear units for deep neural networks[J]. Neural Networks, 2020, 125: 281–289. doi: 10.1016/j.neunet.2020.02.012
|
[46] |
杜进, 陈云华, 张灵, 等. 基于改进深度残差网络的低功耗表情识别[J]. 计算机科学, 2018, 45(9): 303–307,319. doi: 10.11896/j.issn.1002-137X.2018.09.051
DU Jin, CHEN Yunhua, ZHANG Ling, et al. Energy-efficient facial expression recognition based on improved deep residual networks[J]. Computer Science, 2018, 45(9): 303–307,319. doi: 10.11896/j.issn.1002-137X.2018.09.051
|
[47] |
GOODFELLOW I J, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[C]. The 30th International Conference on Machine Learning, Atlanta, USA, 2013.
|
[48] |
AGOSTINELLI F, HOFFMAN M D, SADOWSKI P J, et al. Learning activation functions to improve deep neural networks[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[49] |
YILDIZ C, ACIKGOZ H, KORKMAZ D, et al. An improved residual-based convolutional neural network for very short-term wind power forecasting[J]. Energy Conversion and Management, 2021, 228: 113731. doi: 10.1016/j.enconman.2020.113731
|
[50] |
YAN Jiajia, LI Chaofeng, ZHENG Yuhui, et al. MMP-Net: A multi-scale feature multiple parallel fusion network for single image haze removal[J]. IEEE Access, 2020, 8: 25431–25441. doi: 10.1109/ACCESS.2020.2971092
|
[51] |
TARIQ S, LOY-BENITEZ J, NAM K, et al. Transfer learning driven sequential forecasting and ventilation control of PM2.5 associated health risk levels in underground public facilities[J]. Journal of Hazardous Materials, 2021, 406: 124753. doi: 10.1016/j.jhazmat.2020.124753
|
[52] |
GAO Shanghua, CHENG Mingming, ZHAO Kai, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652–662. doi: 10.1109/TPAMI.2019.2938758
|
[53] |
QIN Jinghui, HUANG Yongjie, and WEN Wushao. Multi-scale feature fusion residual network for single image super-resolution[J]. Neurocomputing, 2020, 379: 334–342. doi: 10.1016/j.neucom.2019.10.076
|
[54] |
XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5987–5995.
|
[55] |
ZHANG Hang, WU Chongruo, ZHANG Zhongyue, et al. ResNeSt: Split-attention networks[OL]. https://arxiv.org/abs/2004.08955v2, 2020.
|
[56] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing et al. Identity mappings in deep residual networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 630–645.
|
[57] |
HAN D, KIM J, and KIM J. Deep pyramidal residual networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6307–6315.
|
[58] |
ZHOU Yue, LI Guoqi, and LI Huiqi. Automatic cataract classification using deep neural network with discrete state transition[J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 436–446. doi: 10.1109/TMI.2019.2928229
|
[59] |
ZHAO Minghang, ZHONG Shisheng, FU Xuyun, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681–4690. doi: 10.1109/TII.2019.2943898
|
[60] |
LIU Shuaiqi, WANG Jie, LU Yucong, et al. Multi-Focus image fusion based on residual network in non-subsampled shearlet domain[J]. IEEE Access, 2019, 7: 152043–152063. doi: 10.1109/ACCESS.2019.2947378
|
[61] |
ARSALAN M, KIM D S, OWAIS M, et al. OR-Skip-Net: Outer residual skip network for skin segmentation in non-ideal situations[J]. Expert Systems with Applications, 2020, 141: 112922. doi: 10.1016/j.eswa.2019.112922
|
[62] |
JIA Haozhe, XIA Yong, SONG Yang, et al. 3D APA-Net: 3D adversarial pyramid anisotropic convolutional network for prostate segmentation in MR images[J]. IEEE Transactions on Medical Imaging, 2020, 39(2): 447–457. doi: 10.1109/TMI.2019.2928056
|
[63] |
ALOTAIBI B and ALOTAIBI M. A hybrid deep resNet and inception model for hyperspectral image classification[J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2020, 88(6): 463–476. doi: 10.1007/s41064-020-00124-x
|
[64] |
LIU Bing, LIU Qiao, ZHANG Taiping, et al. MSSTResNet-TLD: A robust tracking method based on tracking-learning-detection framework by using multi-scale spatio-temporal residual network feature model[J]. Neurocomputing, 2019, 362: 175–194. doi: 10.1016/j.neucom.2019.07.024
|
[65] |
LU Zhenyu, XU Bin, SUN Le, et al. 3-D channel and spatial attention based multiscale spatial-spectral residual network for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4311–4324. doi: 10.1109/JSTARS.2020.3011992
|
[66] |
ZHANG Buyi, QING Chunmei, XU Xiangmin, et al. Spatial residual blocks combined parallel network for hyperspectral image classification[J]. IEEE Access, 2020, 8: 74513–74524. doi: 10.1109/ACCESS.2020.2988553
|
[67] |
FU Jun, LI Weisheng, DU Jiao, et al. A multiscale residual pyramid attention network for medical image fusion[J]. Biomedical Signal Processing and Control, 2021, 66: 102488. doi: 10.1016/j.bspc.2021.102488
|
[68] |
MA Yangyang, QI Fugui, WANG Pengfei, et al. Multiscale residual attention network for distinguishing stationary humans and common animals under through-wall condition using ultra-wideband radar[J]. IEEE Access, 2020, 8: 121572–121583. doi: 10.1109/ACCESS.2020.3006834
|
[69] |
HUANG Gao, SUN Yu, LIU Zhuang, et al. Deep networks with stochastic depth[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 646–661.
|
[70] |
ZHANG Jinpeng, ZHANG Jinming, HU Guyue, et al. Scalenet: A convolutional network to extract multi-scale and fine-grained visual features[J]. IEEE Access, 2019, 7: 147560–147570. doi: 10.1109/ACCESS.2019.2946425
|
[71] |
LIU Hong, CAO Haichao, SONG Enmin, et al. A cascaded dual-pathway residual network for lung nodule segmentation in CT images[J]. Physica Medica, 2019, 63: 112–121. doi: 10.1016/j.ejmp.2019.06.003
|
[72] |
ZAGORUYKO S and KOMODAKIS N. Wide residual networks[C]. The 2016 British Machine Vision Conference, York, UK, 2016: 1–12.
|
[73] |
SHI Jun, LI Zheng, YING Shihui, et al. MR image super-resolution via wide residual networks with fixed skip connection[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(3): 1129–1140. doi: 10.1109/JBHI.2018.2843819
|
[74] |
TAI Ying, YANG Jian, and LIU Xiaoming. Image super-resolution via deep recursive residual network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2790–2798.
|
[75] |
JIN Zhi, IQBAL M Z, ZOU Wenbin, et al. Dual-Stream multi-path recursive residual network for JPEG image compression artifacts reduction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 467–479. doi: 10.1109/TCSVT.2020.2982174
|
[76] |
ZHANG Ke, SUN Miao, HAN T X, et al. Residual networks of residual networks: Multilevel residual networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6): 1303–1314. doi: 10.1109/TCSVT.2017.2654543
|
[77] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
|
[78] |
AMARANAGESWARAO G, DEIVALAKSHMI S, and KO S B. Wavelet based medical image super resolution using cross connected residual-in-dense grouped convolutional neural network[J]. Journal of Visual Communication and Image Representation, 2020, 70: 102819. doi: 10.1016/j.jvcir.2020.102819
|
[79] |
DING Yi, GONG Linpeng, ZHANG Mingfeng, et al. A multi-path adaptive fusion network for multimodal brain tumor segmentation[J]. Neurocomputing, 2020, 412: 19–30. doi: 10.1016/j.neucom.2020.06.078
|
[80] |
SHAN Pufang, WANG Yiding, FU Chong, et al. Automatic skin lesion segmentation based on FC-DPN[J]. Computers in Biology and Medicine, 2020, 123: 103762. doi: 10.1016/j.compbiomed.2020.103762
|
[81] |
CHEN Bingzhi, LI Jinxing, GUO Xiaobao, et al. DualCheXNet: Dual asymmetric feature learning for thoracic disease classification in chest X-rays[J]. Biomedical Signal Processing and Control, 2019, 53: 101554. doi: 10.1016/j.bspc.2019.04.031
|
[82] |
吴宣言, 缑新科, 朱子重, 等. 深层聚合残差密集网络的超声图像左心室分割[J]. 中国图象图形学报, 2020, 25(9): 1930–1942. doi: 10.11834/jig.190552
WU Xuanyan, GOU Xinke, ZHU Zizhong, et al. Left ventricular segmentation on ultrasound images using deep layer aggregation for residual dense networks[J]. Journal of Image and Graphics, 2020, 25(9): 1930–1942. doi: 10.11834/jig.190552
|
[83] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[84] |
YU Shuang, XIAO Di, FROST S, et al. Robust optic disc and cup segmentation with deep learning for glaucoma detection[J]. Computerized Medical Imaging and Graphics, 2019, 74: 61–71. doi: 10.1016/j.compmedimag.2019.02.005
|
[85] |
LU Lin, JIAN Liqiong, LUO Jun, et al. Pancreatic segmentation via ringed residual U-Net[J]. IEEE Access, 2019, 7: 172871–172878. doi: 10.1109/ACCESS.2019.2956550
|
[86] |
KONG Zhengmin, XIONG Feng, ZHANG Chenggang, et al. Automated maxillofacial segmentation in panoramic dental X-Ray images using an efficient encoder-decoder network[J]. IEEE Access, 2020, 8: 207822–207833. doi: 10.1109/ACCESS.2020.3037677
|
[87] |
PHAM V T, TRAN T T, WANG Pachun, et al. EAR-UNet: A deep learning-based approach for segmentation of tympanic membranes from otoscopic images[J]. Artificial Intelligence in Medicine, 2021, 115: 102065. doi: 10.1016/j.artmed.2021.102065
|
[88] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–6.
|
[89] |
CHEN Liang, BENTLEY P, MORI K, et al. DRINet for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2453–2462. doi: 10.1109/TMI.2018.2835303
|
[90] |
GAO Fei, WU T, CHU Xianghua, et al. Deep residual inception encoder–decoder network for medical imaging synthesis[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(1): 39–49. doi: 10.1109/JBHI.2019.2912659
|
[91] |
ZONG Yongshuo, CHEN Jinling, YANG Lvqing, et al. U-Net based method for automatic hard exudates segmentation in fundus images using inception module and residual connection[J]. IEEE Access, 2020, 8: 167225–167235. doi: 10.1109/ACCESS.2020.3023273
|
[92] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-Excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
|
[93] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
|
[94] |
GUAN Qingji and HUANG Yaping. Multi-label chest X-ray image classification via category-wise residual attention learning[J]. Pattern Recognition Letters, 2020, 130: 259–266. doi: 10.1016/j.patrec.2018.10.027
|
[95] |
WANG Jun, BAO Yiming, WEN Yaofeng, et al. Prior-Attention residual learning for more discriminative COVID-19 screening in CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2572–2583. doi: 10.1109/TMI.2020.2994908
|
[96] |
CHENG Junlong, TIAN Shengwei, YU Long, et al. ResGANet: Residual group attention network for medical image classification and segmentation[J]. Medical Image Analysis, 2022, 76: 102313. doi: 10.1016/j.media.2021.102313
|
[97] |
XING Jie, CHEN Chao, LU Qinyang, et al. Using BI-RADS stratifications as auxiliary information for breast masses classification in ultrasound images[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(6): 2058–2070. doi: 10.1109/JBHI.2020.3034804
|
[98] |
乔思波, 庞善臣, 王敏, 等. 基于残差混合注意力机制的脑部CT图像分类卷积神经网络模型[J]. 电子学报, 2021, 49(5): 984–991. doi: 10.12263/DZXB.20200881
QIAO Sibo, PANG Shanchen, WANG Min, et al. A convolutional neural network for brain CT image classification based on residual hybrid attention mechanism[J]. Acta Electronica Sinica, 2021, 49(5): 984–991. doi: 10.12263/DZXB.20200881
|