Citation: | YANG Yuxiang, YU Shaoshuai, LIN Haijun, LI Jianmin, ZHANG Fu. Detection and Intelligent Recognition Method of Swallowing Events Based on Complex Impedance Pharyngography[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3998-4007. doi: 10.11999/JEIT210897 |
[1] |
JAYATILAKE D, UENO T, TERAMOTO Y, et al. Smartphone-based real-time assessment of swallowing ability from the swallowing sound[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2015, 3: 1–10. doi: 10.1109/JTEHM.2015.2500562
|
[2] |
TOBIN A B, MIHNEA M, HILDENBRAND M, et al. Bolus rheology and ease of swallowing of particulated semi-solid foods as evaluated by an elderly panel[J]. Food & Function, 2020, 11(10): 8648–8658. doi: 10.1039/D0FO01728K
|
[3] |
POWERS W J, RABINSTEIN A A, ACKERSON T, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2018, 49(3): e46–e99. doi: 10.1161/STR.0000000000000158
|
[4] |
TEUSCHL Y, TRAPL M, RATAJCZAK P, et al. Systematic dysphagia screening and dietary modifications to reduce stroke-associated pneumonia rates in a stroke-unit[J]. Plos One, 2018, 13(2): e0192142. doi: 10.1371/journal.pone.0192142
|
[5] |
中国吞咽障碍康复评估与治疗专家共识组. 中国吞咽障碍评估与治疗专家共识(2017年版)第二部分 治疗与康复管理篇[J]. 中华物理医学与康复杂志, 2018, 40(1): 1–10. doi: 10.3760/cma.j.issn.0254-1424.2018.01.001
Chinese Expert Consensus Group on the Evaluation and Treatment of Dysphagia Rehabilitation. Expert consensus on evaluation and treatment of dysphagia in China (2017 Edition)[J]. Chinese Journal of Physical Medicine and Rehabilitation, 2018, 40(1): 1–10. doi: 10.3760/cma.j.issn.0254-1424.2018.01.001
|
[6] |
SHIMAZAKI Y, SAITO M, NONOYAMA T, et al. Oral factors associated with swallowing function in independent elders[J]. Oral Health & Preventive Dentistry, 2020, 18(1): 683–691. doi: 10.3290/j.ohpd.a45071
|
[7] |
PAVITHRAN J, PUTHIYOTTIL I V, KUMAR M, et al. Exploring the utility of fibreoptic endoscopic evaluation of swallowing in young children-a comparison with videofluoroscopy[J]. International Journal of Pediatric Otorhinolaryngology, 2020, 138: 110339. doi: 10.1016/j.ijporl.2020.110339
|
[8] |
KU P K M, HOLSINGER F C, CHAN J Y K, et al. Management of dysphagia in the patient with head and neck cancer during COVID‐19 pandemic: practical strategy[J]. Head & Neck, 2020, 42(7): 1491–1496. doi: 10.1002/hed.26224
|
[9] |
O'BRIEN M K, BOTONIS O K, LARKIN E, et al. Advanced machine learning tools to monitor biomarkers of dysphagia: A wearable sensor proof-of-concept study[J]. Digital Biomarkers, 2021, 5(2): 167–175. doi: 10.1159/000517144
|
[10] |
KUROSU A, COYLE J L, DUDIK J M, et al. Detection of swallow kinematic events from acoustic high-resolution cervical auscultation signals in patients with stroke[J]. Archives of Physical Medicine and Rehabilitation, 2019, 100(3): 501–508. doi: 10.1016/j.apmr.2018.05.038
|
[11] |
KHALIFA Y, COYLE J, and LSEJDIĆ E. Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings[J]. Scientific Reports, 2020, 10(1): 8704. doi: 10.1038/s41598-020-65492-1
|
[12] |
SCHULTHEISS C, SCHAUER T, NAHRSTAEDT H, et al. Automated detection and evaluation of swallowing using a combined EMG/bioimpedance measurement system[J]. The Scientific World Journal, 2014, 2014: 405471. doi: 10.1155/2014/405471
|
[13] |
SUZUKI M, SASAKI M, KAMATA K, et al. Swallowing pattern classification method using multichannel surface EMG signals of suprahyoid and infrahyoid muscles[J]. Advanced Biomedical Engineering, 2020, 9: 10–20. doi: 10.14326/abe.9.10
|
[14] |
DAMOURAS S, SEJDIC E, STEELE C M, et al. An online swallow detection algorithm based on the quadratic variation of dual-axis accelerometry[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3352–3359. doi: 10.1109/TSP.2010.2043972
|
[15] |
FAROOQ M, FONTANA J M, and SAZONOV E. A novel approach for food intake detection using electroglottography[J]. Physiological Measurement, 2014, 35(5): 739–751. doi: 10.1088/0967-3334/35/5/739
|
[16] |
KALANTARIAN H, ALSHURAFA N, and SARRAFZADEH M. A wearable nutrition monitoring system[C]. 2014 11th International Conference on Wearable and Implantable Body Sensor Networks, Zurich, Switzerland, 2014: 75–80.
|
[17] |
MIRTCHOUK M, MERCK C, and KLEINBERG S. Automated estimation of food type and amount consumed from body-worn audio and motion sensors[C]. The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 2016: 451–462.
|
[18] |
BI Yin, LV Mingsong, SONG Chen, et al. AutoDietary: A wearable acoustic sensor system for food intake recognition in daily life[J]. IEEE Sensors Journal, 2016, 16(3): 806–816. doi: 10.1109/JSEN.2015.2469095
|
[19] |
INOUE K, YOSHIOKA M, YAGI N, et al. Using machine learning and a combination of respiratory flow, laryngeal motion, and swallowing sounds to classify safe and unsafe swallowing[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(11): 2529–2541. doi: 10.1109/TBME.2018.2807487
|
[20] |
KUSUHARA T, NAKAMURA T, SHIRAKAWA Y, et al. Impedance pharyngography to assess swallowing function[J]. Journal of International Medical Research, 2004, 32(6): 608–616. doi: 10.1177/147323000403200605
|
[21] |
ZHANG Fu, MCILDUFF C, GUTIERREZ H, et al. Bioimpedance Measurement to Evaluate Swallowing in a Patient with Amyotrophic Lateral Sclerosis[C]. International Conference on Electrical Bioimpedance, Joinville, Brazil, 2019: 107–112.
|
[22] |
RENGARAJAN A and GYAWALI C P. Functional anatomy and physiology of swallowing and esophageal motility[M]. RICHTER J E, CASTELL D O, KATZKA D A, et al. The Esophagus. 6th ed. Chichester: John Wiley & Sons Ltd. , 2021: 59–96.
|
[23] |
ALIX J J P, MCDONOUGH H E, SONBAS B, et al. Multi-dimensional electrical impedance myography of the tongue as a potential biomarker for amyotrophic lateral sclerosis[J]. Clinical Neurophysiology, 2020, 131(4): 799–808. doi: 10.1016/j.clinph.2019.12.418
|
[24] |
SANCHEZ B, IYER S R, LI Jia, et al. Non‐invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography[J]. Muscle & Nerve, 2017, 56(6): E85–E94. doi: 10.1002/mus.25559
|
[25] |
李刚, 周梅, 何峰, 等. 基于数字锁相相关计算结构的优化算法[J]. 电子与信息学报, 2012, 34(3): 744–748. doi: 10.3724/SP.J.1146.2011.00333
LI Gang, ZHOU Mei, HE Feng, et al. An optimization algorithm based on computation structure of correlation in digital lock-in detection[J]. Journal of Electronics &Information Technology, 2012, 34(3): 744–748. doi: 10.3724/SP.J.1146.2011.00333
|
[26] |
CHEN Xinda, WEI Minxiang, CHEN Kai, et al. Research on weak signal detection of integral average digital lock-in amplifier[J]. Measurement Science and Technology, 2021, 32(10): 105905. doi: 10.1088/1361-6501/ac0d74
|
[27] |
GRIMNES S and MARTINSEN Ø G. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors[J]. Journal of Physics D:Applied Physics, 2006, 40(1): 9–14. doi: 10.1088/0022-3727/40/1/S02
|
[28] |
杨淑莹, 桂彬彬, 陈胜勇. 基于小波分解和1D-GoogLeNet的心律失常检测[J]. 电子与信息学报, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
YANG Shuying, GUI Binbin, and CHEN Shengyong. Arrhythmia detection based on wavelet decomposition and 1D-GoogLeNet[J]. Journal of Electronics &Information Technology, 2021, 43(10): 3018–3027. doi: 10.11999/JEIT200774
|
[29] |
ALSHURAFA N, KALANTARIAN H, POURHOMAYOUN M, et al. Recognition of nutrition intake using time-frequency decomposition in a wearable necklace using a piezoelectric sensor[J]. IEEE Sensors Journal, 2015, 15(7): 3909–3916. doi: 10.1109/JSEN.2015.2402652
|
[30] |
SAZONOV E S, MAKEYEV O, SCHUCKERS S, et al. Automatic detection of swallowing events by acoustical means for applications of monitoring of ingestive behavior[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(3): 626–633. doi: 10.1109/TBME.2009.2033037
|