Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHANG Huaxia, SUN Weitao, WANG Huigang, RONG Shaowei. 3D Parameters Estimation of Helicopter with Constant Speed Circular Motion Based on Single Hydrophone[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3910-3916. doi: 10.11999/JEIT210887
Citation: ZHANG Huaxia, SUN Weitao, WANG Huigang, RONG Shaowei. 3D Parameters Estimation of Helicopter with Constant Speed Circular Motion Based on Single Hydrophone[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3910-3916. doi: 10.11999/JEIT210887

3D Parameters Estimation of Helicopter with Constant Speed Circular Motion Based on Single Hydrophone

doi: 10.11999/JEIT210887
Funds:  The National Key Laboratory of Science and Technology on Underwater Acoustic Antagonizing (JZX7Y201911SY003401), The Science, Technology and Innovation of Shenzhen Municipality (CYJ20190806150003606), The Fundamental Research Funds for the Central Universities (D5000220158)
  • Received Date: 2021-08-27
  • Rev Recd Date: 2022-07-07
  • Available Online: 2022-07-11
  • Publish Date: 2022-11-14
  • The Three-Dimensional(3D) parameter estimation algorithm of the helicopter with constant speed circular flight from the underwater acoustic data with single hydrophone is proposed. Firstly, the helicopter line spectrum is used as the characteristic of the source, and its 3D Doppler propagation model in two-layer air-water medium is established. Then, the parameters estimation for helicopter in 3D space is derived according to the Doppler frequency shift curve, the sound source motion model and the geometric model of sound propagation. Finally, the effectiveness and accuracy of the algorithm for Doppler signal with the alpha stable noise on single hydrophone is verified.
  • loading
  • [1]
    李浩铭, 鄢社锋, 徐立军, 等. 基于射线声学的水下传感网络静默定位算法[J]. 电子与信息学报, 2021, 43(3): 781–787. doi: 10.11999/JEIT200383

    LI Haoming, YAN Shefeng, XU Lijun, et al. A silent location algorithm for underwater sensor network based on ray acoustics[J]. Journal of Electronics &Information Technology, 2021, 43(3): 781–787. doi: 10.11999/JEIT200383
    [2]
    石海杰, 李京华, 陈刚. 水声探空动目标参数测量方法[J]. 系统工程与电子技术, 2021, 43(1): 11–18. doi: 10.3969/j.issn.1001-506X.2021.01.02

    SHI Haijie, LI Jinghua, and CHEN Gang. Hydroacoustic measurement method of airborne moving target parameters[J]. Systems Engineering and Electronics, 2021, 43(1): 11–18. doi: 10.3969/j.issn.1001-506X.2021.01.02
    [3]
    刘凯悦, 彭朝晖, 张灵珊, 等. 水下对空中声源的运动参数估计[J]. 应用声学, 2020, 39(2): 236–245. doi: 10.11684/j.issn.1000-310X.2020.02.010

    LIU Kaiyue, PENG Zhaohui, ZHANG Lingshan, et al. Motion parameters estimation of airborne source from underwater[J]. Journal of Applied Acoustics, 2020, 39(2): 236–245. doi: 10.11684/j.issn.1000-310X.2020.02.010
    [4]
    王彪, 陈宇, 徐千驰, 等. 非理想条件下基于矢量水听器阵列的一种快速方位估计算法[J]. 电子与信息学报, 2021, 43(3): 745–751. doi: 10.11999/JEIT200541

    WANG Biao, CHEN Yu, XU Qianchi, et al. A fast direction estimation algorithm based on vector hydrophone array under non-ideal conditions[J]. Journal of Electronics &Information Technology, 2021, 43(3): 745–751. doi: 10.11999/JEIT200541
    [5]
    URICK R J. Noise signature of an aircraft in level flight over a hydrophone in the sea[J]. The Journal of the Acoustical Society of America, 1972, 52(3B): 993–999. doi: 10.1121/1.1913206
    [6]
    FERGUSON B G and SPEECHLEY G C. Acoustic detection and localization of an ASW aircraft by a submarine[J]. The United States Navy Journal of Underwater Acoustics, 1989, 39: 25–41.
    [7]
    BOLGHASI A, GHADIMI P, and CHEKAB M A F. Low-frequency sound transmission through rough bubbly air–water interface at the sea surface[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2017, 36(4): 319–338. doi: 10.1177/1461348417744295
    [8]
    PENHALE M and BARNARD A. Direction of arrival estimation in practical scenarios using moving standard deviation processing for localization and tracking with acoustic vector sensors[J]. Applied Acoustics, 2020, 168: 107421. doi: 10.1016/j.apacoust.2020.107421
    [9]
    LO K W. Flight parameter estimation using instantaneous frequency and direction of arrival measurements from a single acoustic sensor node[J]. The Journal of the Acoustical Society of America, 2017, 141(3): 1332–1348. doi: 10.1121/1.4976091
    [10]
    张华霞, 王惠刚, 孙伟涛, 等. 采用单水听器匀速直线运动直升机三维参数估计算法[EB/OL]. https://www.researchgate.net.2022.6.

    ZHANG Huaxia, WANG Huigang, SUN Weitao and RONG Shaowei. 3D Parameters Estimation of Helicopter with Constant Speed Using Single Hydr ophone[EB/OL]. https://www. researchgate.net2022.6.
    [11]
    SUN Weitao, WANG Huigang, GU Qingyue, et al. Exact frequency estimation in the i. i. d. noise via KL divergence of accumulated power[J]. IEEE Communications Letters, 2021, 25(8): 2574–2578. doi: 10.1109/LCOMM.2021.3077315
    [12]
    SUN Weitao, WANG Huigang, GU Qingyue, et al. Exact and robust time-frequency estimation via accumulation of phase-difference power on multiple log-sum[J]. Journal of Latex Class Files, 14(8): 1–11.
    [13]
    LIM J S, PANG H S, and LEE K. Time delay estimation based on log-sum and lp-norm penalized minor component analysis[J]. The Journal of the Acoustical Society of America, 2018, 143(6): 3979–3984. doi: 10.1121/1.5042353
    [14]
    SHEN Y, Fang J, and LI H. Exact Reconstruction Analysis of Log-Sum Minimization for Compressed Sensing[J]. IEEE Signal Processing Letters, 2013, 20(12): 1223–1226. doi: 10.1109/LSP.2013.2285579
    [15]
    FAISAL S and DILIP S. Log-sum distance measures and its application to human-activity monitoring and recognition using data from motion sensors[J]. IEEE Sensors Journal, 2017, 17(14): 4520–4533. doi: 10.1109/JSEN.2017.2707921
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (346) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return