Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, CUI Li. Constructions of Periodic Quasi-complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881
Citation: CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, CUI Li. Constructions of Periodic Quasi-complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881

Constructions of Periodic Quasi-complementary Sequence Sets

doi: 10.11999/JEIT210881
Funds:  The Natural Science Foundation of Hebei Province (F2021203078), The Science and Technology Project of Hebei Education Department (ZD2022026)
  • Received Date: 2021-08-26
  • Rev Recd Date: 2022-05-09
  • Available Online: 2022-05-21
  • Publish Date: 2022-11-14
  • Based on the support of binary sequences and low correlation sequence sets, a new framework for constructing periodic quasi-complementary sequence sets is proposed. Based on this framework, three classes of asymptotically optimal and asymptotically almost optimal periodic quasi-complementary sequence sets are proposed by using the optimal quaternary sequence family A, family D and Luke sequence set, respectively. In addition, the parameters of sequence set are determined by the binary sequence and the low correlation sequence set. Compared with the traditional complete complementary sequence set, the quasi-complementary sequence set includes more sequences, which can support more users in multi-carrier spread spectrum communication system.
  • loading
  • [1]
    RATHINAKUMAR A and CHATURVEDI A K. Complete mutually orthogonal Golay complementary sets from reed-Muller codes[J]. IEEE Transactions on Information Theory, 2008, 54(3): 1339–1346. doi: 10.1109/TIT.2007.915980
    [2]
    SUEHIRO N and HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1): 143–146. doi: 10.1109/18.2615
    [3]
    SUEHIRO N. A signal design without co-channel interference for approximately synchronized CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(5): 837–841. doi: 10.1109/49.298057
    [4]
    CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124
    [5]
    LIU Zilong, GUAN Yongliang, and CHEN H H. Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1226–1236. doi: 10.1109/TWC.2014.2365467
    [6]
    LIU Zilong, PARAMPALLI U, and GUAN Yongliang. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5768–5781. doi: 10.1109/TIT.2014.2335731
    [7]
    KE Pinhui and LIU Zhengchun. A generic construction of Z-periodic complementary sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512
    [8]
    陈晓玉, 李冠敏, 孔德明, 等. 高斯整数零相关区序列集构造方法的研究[J]. 电子与信息学报, 2019, 41(6): 1420–1426. doi: 10.11999/JEIT180703

    CHEN Xiaoyu, LI Guanmin, KONG Deming, et al. Research on the constructions of gaussian integer zero correlation zone sequence set[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1420–1426. doi: 10.11999/JEIT180703
    [9]
    陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703

    CHEN Xiaoyu, SU Heru, and GAO Xichao. Construction of optimal zero correlation zone aperiodic complementary sequence sets[J]. Journal of Electronics &Information Technology, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703
    [10]
    LIU Tao, XU Chengqian, and LI Yubo. Binary complementary sequence set with low correlation zone[J]. IEEE Signal Processing Letters, 2020, 27: 1550–1554. doi: 10.1109/LSP.2020.3018628
    [11]
    LIU Zilong, PARAMPALLI U, GUAN Yongliang, et al. Constructions of optimal and near-optimal quasi-complementary sequence sets from Singer difference sets[J]. IEEE Wireless Communications Letters, 2013, 2(5): 487–490. doi: 10.1109/WCL.2013.061213.130286
    [12]
    LI Yubo, LIU Tao, and XU Chengqian. Constructions of asymptotically optimal quasi-complementary sequence sets[J]. IEEE Communications Letters, 2018, 22(8): 1516–1519. doi: 10.1109/LCOMM.2018.2836432
    [13]
    LI Yubo, TIAN Liying, LIU Tao, et al. Constructions of quasi-complementary sequence sets associated with characters[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4597–4608. doi: 10.1109/TIT.2018.2890153
    [14]
    LI Yubo, TIAN Liying, LIU Tao, et al. Two constructions of asymptotically optimal quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2019, 67(3): 1910–1924. doi: 10.1109/TCOMM.2018.2885811
    [15]
    FAN Pingzhi and DARNELL M. Sequence Design for Communications Applications[M]. Taunton, England: Research Studies Press, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(4)

    Article Metrics

    Article views (571) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return