Citation: | CHEN Xiaoyu, PENG Xiuying, WANG Chengrui, CUI Li. Constructions of Periodic Quasi-complementary Sequence Sets[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4034-4040. doi: 10.11999/JEIT210881 |
[1] |
RATHINAKUMAR A and CHATURVEDI A K. Complete mutually orthogonal Golay complementary sets from reed-Muller codes[J]. IEEE Transactions on Information Theory, 2008, 54(3): 1339–1346. doi: 10.1109/TIT.2007.915980
|
[2] |
SUEHIRO N and HATORI M. N-shift cross-orthogonal sequences[J]. IEEE Transactions on Information Theory, 1988, 34(1): 143–146. doi: 10.1109/18.2615
|
[3] |
SUEHIRO N. A signal design without co-channel interference for approximately synchronized CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(5): 837–841. doi: 10.1109/49.298057
|
[4] |
CHEN H H, YEH J F, and SUEHIRO N. A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications[J]. IEEE Communications Magazine, 2001, 39(10): 126–135. doi: 10.1109/35.956124
|
[5] |
LIU Zilong, GUAN Yongliang, and CHEN H H. Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1226–1236. doi: 10.1109/TWC.2014.2365467
|
[6] |
LIU Zilong, PARAMPALLI U, and GUAN Yongliang. Optimal odd-length binary Z-complementary pairs[J]. IEEE Transactions on Information Theory, 2014, 60(9): 5768–5781. doi: 10.1109/TIT.2014.2335731
|
[7] |
KE Pinhui and LIU Zhengchun. A generic construction of Z-periodic complementary sequence sets with flexible flock size and zero correlation zone length[J]. IEEE Signal Processing Letters, 2015, 22(9): 1462–1466. doi: 10.1109/LSP.2014.2369512
|
[8] |
陈晓玉, 李冠敏, 孔德明, 等. 高斯整数零相关区序列集构造方法的研究[J]. 电子与信息学报, 2019, 41(6): 1420–1426. doi: 10.11999/JEIT180703
CHEN Xiaoyu, LI Guanmin, KONG Deming, et al. Research on the constructions of gaussian integer zero correlation zone sequence set[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1420–1426. doi: 10.11999/JEIT180703
|
[9] |
陈晓玉, 苏荷茹, 高茜超. 一类最优的零相关区非周期互补序列集构造法[J]. 电子与信息学报, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703
CHEN Xiaoyu, SU Heru, and GAO Xichao. Construction of optimal zero correlation zone aperiodic complementary sequence sets[J]. Journal of Electronics &Information Technology, 2021, 43(2): 461–466. doi: 10.11999/JEIT190703
|
[10] |
LIU Tao, XU Chengqian, and LI Yubo. Binary complementary sequence set with low correlation zone[J]. IEEE Signal Processing Letters, 2020, 27: 1550–1554. doi: 10.1109/LSP.2020.3018628
|
[11] |
LIU Zilong, PARAMPALLI U, GUAN Yongliang, et al. Constructions of optimal and near-optimal quasi-complementary sequence sets from Singer difference sets[J]. IEEE Wireless Communications Letters, 2013, 2(5): 487–490. doi: 10.1109/WCL.2013.061213.130286
|
[12] |
LI Yubo, LIU Tao, and XU Chengqian. Constructions of asymptotically optimal quasi-complementary sequence sets[J]. IEEE Communications Letters, 2018, 22(8): 1516–1519. doi: 10.1109/LCOMM.2018.2836432
|
[13] |
LI Yubo, TIAN Liying, LIU Tao, et al. Constructions of quasi-complementary sequence sets associated with characters[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4597–4608. doi: 10.1109/TIT.2018.2890153
|
[14] |
LI Yubo, TIAN Liying, LIU Tao, et al. Two constructions of asymptotically optimal quasi-complementary sequence sets[J]. IEEE Transactions on Communications, 2019, 67(3): 1910–1924. doi: 10.1109/TCOMM.2018.2885811
|
[15] |
FAN Pingzhi and DARNELL M. Sequence Design for Communications Applications[M]. Taunton, England: Research Studies Press, 1996.
|