Citation: | NING Guochen, ZHANG Xinran, LIAO Hongen. Multi-degree-of-freedom Intelligent Ultrasound Robot System Based on Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2022, 44(1): 1-10. doi: 10.11999/JEIT210879 |
[1] |
VON HAXTHAUSEN F, BÖTTGER F, WULFF S, et al. Medical robotics for ultrasound imaging: Current systems and future trends[J]. Current Robotics Reports, 2021, 2(1): 55–71. doi: 10.1007/s43154-020-00037-y
|
[2] |
CHEN Fang, LIU Jia, and LIAO Hongen. 3D catheter shape determination for endovascular navigation using a two-step particle filter and ultrasound scanning[J]. IEEE Transactions on Medical Imaging, 2017, 36(3): 685–695. doi: 10.1109/TMI.2016.2635673
|
[3] |
BEALES L, WOLSTENHULME S, EVANS J A, et al. Reproducibility of ultrasound measurement of the abdominal aorta[J]. British Journal of Surgery, 2011, 98(11): 1517–1525. doi: 10.1002/bjs.7628
|
[4] |
CARDINAL H N, GILL J D, and FENSTER A. Analysis of geometrical distortion and statistical variance in length, area, and volume in a linearly scanned 3-D ultrasound image[J]. IEEE Transactions on Medical Imaging, 2000, 19(6): 632–651. doi: 10.1109/42.870670
|
[5] |
SUNG G T and GILL I S. Robotic laparoscopic surgery: A comparison of the da Vinci and Zeus systems[J]. Urology, 2001, 58(6): 893–898. doi: 10.1016/S0090-4295(01)01423-6
|
[6] |
HUANG Qinghua, LAN Jiulong, and LI Xuelong. Robotic arm based automatic ultrasound scanning for three-dimensional imaging[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 1173–1182. doi: 10.1109/TII.2018.2871864
|
[7] |
JIANG Zhongliang, ZHOU Yue, BI Yuan, et al. Deformation-aware robotic 3D ultrasound[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7675–7682. doi: 10.1109/LRA.2021.3099080
|
[8] |
HOUSDEN J, WANG Shuangyi, BAO Xianqiang, et al. Towards standardized acquisition with a dual-probe ultrasound robot for fetal imaging[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1059–1065. doi: 10.1109/LRA.2021.3056033
|
[9] |
JIANG Zhongliang, GRIMM M, ZHOU Mingchuan, et al. Automatic normal positioning of robotic ultrasound probe based only on confidence map optimization and force measurement[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1342–1349. doi: 10.1109/LRA.2020.2967682
|
[10] |
MEROUCHE S, ALLARD L, MONTAGNON E, et al. A robotic ultrasound scanner for automatic vessel tracking and three-dimensional reconstruction of b-mode images[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(1): 35–46. doi: 10.1109/TUFFC.2015.2499084
|
[11] |
NING Guochen, ZHANG Xinran, and LIAO Hongen. Autonomic robotic ultrasound imaging system based on reinforcement learning[J] IEEE Transactions on Biomedical Engineering, 2021, 68(9): 2787–2797.
|
[12] |
HENNERSPERGER C, FUERST B, VIRGA S, et al. Towards MRI-based autonomous robotic US acquisitions: A first feasibility study[J]. IEEE Transactions on Medical Imaging, 2017, 36(2): 538–548. doi: 10.1109/TMI.2016.2620723
|
[13] |
CHATELAIN P, KRUPA A, and MARCHAL M. Real-time needle detection and tracking using a visually servoed 3D ultrasound probe[C]. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 2013: 1676–1681.
|
[14] |
LI Keyu, XU Yangxin, and MENG M Q H. An overview of systems and techniques for autonomous robotic ultrasound acquisitions[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(2): 510–524. doi: 10.1109/TMRB.2021.3072190
|
[15] |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529–533. doi: 10.1038/nature14236
|
[16] |
NGUYEN T T, NGUYEN N D, and NAHAVANDI S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3826–3839. doi: 10.1109/TCYB.2020.2977374
|
[17] |
SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018.
|
[18] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv: 1707.06347, 2017.
|
[19] |
SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 1889–1897.
|
[20] |
UGURLU B, HAVOUTIS I, SEMINI C, et al. Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: Experiments on RoboCat-1 and HyQ[J]. Autonomous Robots, 2015, 38(4): 415–437. doi: 10.1007/s10514-015-9422-7
|
[21] |
VARIN P, GROSSMAN L, and KUINDERSMA S. A comparison of action spaces for learning manipulation tasks[C]. Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 2019: 6015–6021.
|