Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
SUN Minhong, CHEN Xinwei, QIU Zhaoyang, TENG Xuyang. Radar Deception Jamming Recognition Method Based on Domain Adaptation and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3891-3899. doi: 10.11999/JEIT210871
Citation: SUN Minhong, CHEN Xinwei, QIU Zhaoyang, TENG Xuyang. Radar Deception Jamming Recognition Method Based on Domain Adaptation and Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3891-3899. doi: 10.11999/JEIT210871

Radar Deception Jamming Recognition Method Based on Domain Adaptation and Attention Mechanism

doi: 10.11999/JEIT210871
Funds:  The Characteristic Discipline Program of National Defense (JCKY2019415D002)
  • Received Date: 2021-08-24
  • Accepted Date: 2022-03-03
  • Rev Recd Date: 2022-02-21
  • Available Online: 2022-03-09
  • Publish Date: 2022-11-14
  • Considering solving the problem that the application of conventional feature recognition methods is limited and the depth learning method needs a large amount of labeled data to achieve high recognition performance in radar deception jamming recognition, a domain adaptive radar deception jamming recognition method based on depth residual model is proposed to improve the labeling limit. The attention mechanism is integrated to improve further the recognition accuracy. Firstly, after the time-frequency transformation of the radar received signal, the domain adaptation technology based on the idea of countermeasure network is applied to realize the migration recognition from labeled source domain samples to unlabeled target domain samples. Secondly, through the designed spatial channel attention residual module, the network training focuses on the global spatial features and high response channels of the time-frequency image, so as to ignore the areas with low mobility in the time-frequency image and suppress the generation of negative migration. Experimental results on radar deception jamming data sets in different source and target domains show the feasibility and effectiveness of the proposed method.
  • loading
  • [1]
    ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    [2]
    LIU Zhen, SUI Jinping, WEI Zhenhua, et al. A sparse-driven anti-velocity deception jamming strategy based on pulse-Doppler radar with random pulse initial phases[J]. Sensors, 2018, 18(4): 1249. doi: 10.3390/s18041249
    [3]
    LIU Jieyi, ZHANG Linrang, ZHAO Shanshan, et al. Correlation characteristic analysis in diversity multiple-input multiple-output radar[J]. Electronics Letters, 2017, 53(5): 349–351. doi: 10.1049/el.2016.3535
    [4]
    ZHANG Zhaojian, XIE Junwei, SHENG Chuan, et al. Deceptive jamming discrimination based on range-angle localization of a frequency diverse array[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(9): 1437–1446. doi: 10.1631/FITEE.1601577
    [5]
    王文益, 李文静, 卢丹, 等. 利用TDOA相关系数的ADS-B欺骗式干扰检测[J]. 信号处理, 2019, 35(11): 1784–1790. doi: 10.16798/j.issn.1003-0530.2019.11.002

    WANG Wenyi, LI Wenjing, LU Dan, et al. ADS-B spoofing detection method using TDOA correlation coefficient[J]. Journal of Signal Processing, 2019, 35(11): 1784–1790. doi: 10.16798/j.issn.1003-0530.2019.11.002
    [6]
    王晓戈, 陈辉, 倪萌钰, 等. 基于相位调制的雷达抗假目标干扰方法[J]. 系统工程与电子技术, 2021, 43(9): 2476–2483. doi: 10.12305/j.issn.1001-506X.2021.09.14

    WANG Xiaoge, CHEN Hui, NI Mengyu, et al. Radar anti-false target jamming method based on phase modulation[J]. Systems Engineering and Electronics, 2021, 43(9): 2476–2483. doi: 10.12305/j.issn.1001-506X.2021.09.14
    [7]
    阮怀林, 杨兴宇. 基于栈式稀疏自编码器的有源欺骗干扰识别[J]. 探测与控制学报, 2018, 40(4): 62–67.

    RUAN Huailin and YANG Xingyu. Radar active deception identification method based on stacked sparse autoencoder[J]. Journal of Detection &Control, 2018, 40(4): 62–67.
    [8]
    黄国策, 王桂胜, 任清华, 等. 基于Hilbert信号空间的未知干扰自适应识别方法[J]. 电子与信息学报, 2019, 41(8): 1916–1923. doi: 10.11999/JEIT180891

    HUANG Guoce, WANG Guisheng, REN Qinghua, et al. Adaptive recognition method for unknown interference based on Hilbert signal space[J]. Journal of Electronics &Information Technology, 2019, 41(8): 1916–1923. doi: 10.11999/JEIT180891
    [9]
    王文益, 吴庆. 利用改进型AlexNet的ADS-B欺骗式干扰检测[J]. 信号处理, 2020, 36(5): 741–747. doi: 10.16798/j.issn.1003-0530.2020.05.013

    WANG Wenyi and WU Qing. ADS-B spoofing interference detection using improved AlexNet[J]. Journal of Signal Processing, 2020, 36(5): 741–747. doi: 10.16798/j.issn.1003-0530.2020.05.013
    [10]
    冯熳, 王梓楠. 基于奇异值分解与神经网络的干扰识别[J]. 电子与信息学报, 2020, 42(11): 2573–2578. doi: 10.11999/JEIT190228

    FENG Man and WANG Zi’nan. Interference recognition based on singular value decomposition and neural network[J]. Journal of Electronics &Information Technology, 2020, 42(11): 2573–2578. doi: 10.11999/JEIT190228
    [11]
    范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238

    FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: General situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238
    [12]
    LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. The 32nd International Conference on Machine Learning, Lille, France, 2015: 97–105.
    [13]
    LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep transfer learning with joint adaptation networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 2208–2217.
    [14]
    GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [15]
    SPARROW M J and CIKALO J. ECM techniques to counter pulse compression radar[P]. US, 7081846, 2006.
    [16]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [17]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
    [18]
    BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1-2): 151–175. doi: 10.1007/s10994-009-5152-4
    [19]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [20]
    杨兴宇, 阮怀林. 基于时频图像Zernike矩特征的欺骗干扰识别[J]. 现代雷达, 2018, 40(2): 91–95. doi: 10.16592/j.cnki.1004-7859.2018.02.018

    YANG Xingyu and RUAN Huailin. A recognition method of deception jamming based on image Zernike moment feature of time-frequency distribution[J]. Modern Radar, 2018, 40(2): 91–95. doi: 10.16592/j.cnki.1004-7859.2018.02.018
    [21]
    PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (898) PDF downloads(158) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return