Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
BI Xuejie, HUI Juan, ZHAO Anbang, WANG Biao, MA Lin, LI Xiaoman. Research on Acoustic Target Depth Classification Method Based on Matching Field Processing in Shallow Water[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3917-3930. doi: 10.11999/JEIT210848
Citation: BI Xuejie, HUI Juan, ZHAO Anbang, WANG Biao, MA Lin, LI Xiaoman. Research on Acoustic Target Depth Classification Method Based on Matching Field Processing in Shallow Water[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3917-3930. doi: 10.11999/JEIT210848

Research on Acoustic Target Depth Classification Method Based on Matching Field Processing in Shallow Water

doi: 10.11999/JEIT210848
Funds:  The National Natural Science Foundation of China (11574120, 12004143), The Science and Technology Foundation of State Key Laboratory (6142108190907), The Scientific Research Staring Foundation by Jiangsu University of Science and Technology (1032932003, 1032931907, 1032932007), The Open Foundation of Key Laboratory of Marine Intelligent Equipment and System, Ministry of Education (MIES-2020-09)
  • Received Date: 2021-08-18
  • Accepted Date: 2021-12-14
  • Rev Recd Date: 2021-12-10
  • Available Online: 2021-12-25
  • Publish Date: 2022-11-14
  • Considering the problems of the existing acoustic target depth classification methods in shallow water, such as limited frequency range and high signal-to-noise ratio requirements, on the premise of effective ranging results, a novel target depth classification algorithm based on new matching variable is proposed. By analyzing the depth distribution characteristics of the mode cross-correlation items, the target depth classification model is established by using the vertical complex acoustic intensity as matching variable. When the receiving depths are different, although the algorithms all use the vertical complex acoustic intensity as matching variable, the mode cross-correlation items that directly affect the depth classification effect are different. According to the different target depth classification requirements, by specifying receiving depths of dual vector sensors, the matching variable selection of the target depth classification model can be optimized, thereby achieving the improvement of the target depth classification algorithm performance. The simulation results indicate that this method is suitable for targets whose frequency excites three modes, so as to expand frequency range of the algorithm. The algorithm can obtain valuable depth classification results in complex ocean waveguide under low Signal-to-Noise Ratio (SNR= 0 dB).
  • loading
  • [1]
    苍思远, 生雪莉, 董航, 等. 解卷积主动声呐目标回波高分辨时延估计技术[J]. 电子与信息学报, 2021, 43(3): 842–849. doi: 10.11999/JEIT200649

    CANG Siyuan, SHENG Xueli, DONG Hang, et al. Deconvolution-based target echo high-resolution time delay estimation technique using active sonar[J]. Journal of Electronics &Information Technology, 2021, 43(3): 842–849. doi: 10.11999/JEIT200649
    [2]
    李海鹏, 孙大军, 郑翠娥. 强干扰环境下水声时延估计技术研究[J]. 电子与信息学报, 2021, 43(3): 873–880. doi: 10.11999/JEIT200638

    LI Haipeng, SUN Dajun, and ZHENG Cui’e. Time of arrival estimation in presence of strong interference[J]. Journal of Electronics &Information Technology, 2021, 43(3): 873–880. doi: 10.11999/JEIT200638
    [3]
    邹明松, 刘树晓. Pekeris水声波导环境中水面和水下状态船体辐射噪声的差异分析[J]. 振动与冲击, 2019, 38(22): 204–209,250. doi: 10.13465/j.cnki.jvs.2019.22.029

    ZOU Mingsong and LIU Shuxiao. Comparative study on the acoustic radiation of a ship under water-surface and underwater conditions in Pekeris acoustic waveguide[J]. Journal of Vibration and Shock, 2019, 38(22): 204–209,250. doi: 10.13465/j.cnki.jvs.2019.22.029
    [4]
    李辉. 深海大深度声场特性与目标定位技术研究[D]. [博士论文], 西北工业大学, 2017.

    LI Hui. Studies on acoustic field characteristics and passive localization methods at great depth of the deep ocean[D]. [Ph. D. dissertation], Northwestern Polytechnical University, 2017.
    [5]
    于梦枭, 周士弘, 张岩, 等. 浅海宽带简正模相干/非相干能量比值特征匹配的源深估计[J]. 声学学报, 2020, 45(3): 308–324. doi: 10.15949/j.cnki.0371-0025.2020.03.003

    YU Mengxiao, ZHOU Shihong, ZHANG Yan, et al. Source depth estimation by matching broadband coherent and incoherent energy ratios of normal modes in shallow water[J]. Acta Acustica, 2020, 45(3): 308–324. doi: 10.15949/j.cnki.0371-0025.2020.03.003
    [6]
    余赟. 浅海低频声场干涉结构及其应用研究[D]. [博士论文], 哈尔滨工程大学, 2011.

    YU Yun. The interference structure of shallow water low-frequency acoustic field and its application[D]. [Ph. D. dissertation], Harbin Engineering University, 2011.
    [7]
    刘志韬, 郭良浩, 闫超. 利用波导不变量的浅海负跃层声源深度判别[J]. 声学学报, 2019, 44(5): 925–933. doi: 10.15949/j.cnki.0371-0025.2019.05.013

    LIU Zhitao, GUO Lianghao, and YAN Chao. Source depth discrimination in negative thermocline using waveguide invariant[J]. Acta Acustica, 2019, 44(5): 925–933. doi: 10.15949/j.cnki.0371-0025.2019.05.013
    [8]
    CHO S I, KIM D, and KIM J S. Source depth discrimination based on channel impulse response[J]. The Journal of the Acoustical Society of Korea, 2019, 38(1): 120–127. doi: 10.7776/ASK.2019.38.1.120
    [9]
    刘志韬, 郭良浩, 闫超. 利用自相关函数warping变换的浅海声源深度判别[J]. 声学学报, 2019, 44(1): 28–38. doi: 10.15949/j.cnki.0371-0025.2019.01.004

    LIU Zhitao, GUO Lianghao, and YAN Chao. Source depth discrimination in shallow water based on relation formula warping transform[J]. Acta Acustica, 2019, 44(1): 28–38. doi: 10.15949/j.cnki.0371-0025.2019.01.004
    [10]
    WORTHMANN B M, SONG H C, and DOWLING D R. Adaptive frequency-difference matched field processing for high frequency source localization in a noisy shallow ocean[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 543–556. doi: 10.1121/1.4973955
    [11]
    LIANG Guolong, ZHANG Yifeng, ZOU Nan, et al. Match-Mode autoregressive method for moving source depth estimation in shallow water waveguides[J]. Mathematical Problems in Engineering, 2018, 2018: 7824671. doi: 10.1155/2018/7824671
    [12]
    LEI Zhixiong, YANG Kunde, and MA Yuanliang. Passive localization in the deep ocean based on cross-correlation function matching[J]. The Journal of the Acoustical Society of America, 2016, 139(6): EL196–EL201. doi: 10.1121/1.4954053
    [13]
    郭晓乐, 杨坤德, 马远良, 等. 一种基于简正波模态消频散变换的声源距离深度估计方法[J]. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302

    GUO Xiaole, YANG Kunde, MA Yuanliang, et al. A source range and depth estimation method based on modal dedispersion transform[J]. Acta Physica Sinica, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [14]
    ZHENG Guangying, YANG T C, MA Qiming, et al. Matched beam-intensity processing for a deep vertical line array[J]. The Journal of the Acoustical Society of America, 2020, 148(1): 347–358. doi: 10.1121/10.0001583
    [15]
    LI Hui, XU Zhezhen, YANG Kunde, et al. Use of multipath time-delay ratio for source depth estimation with a vertical line array in deep water[J]. The Journal of the Acoustical Society of America, 2021, 149(1): 524–539. doi: 10.1121/10.0003364
    [16]
    郑胜家, 韩东, 李晓, 等. 匹配场定位强干扰抑制最小方差无畸变响应处理技术[J]. 仪器仪表学报, 2014, 35(7): 1586–1593. doi: 10.19650/j.cnki.cjsi.2014.07.019

    ZHENG Shengjia, HAN Dong, LI Xiao, et al. Processor of minimum variance distortionless response with strong interference suppression for matched field processing[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1586–1593. doi: 10.19650/j.cnki.cjsi.2014.07.019
    [17]
    徐国军, 张林, 韩梅, 等. 基于声干涉特征匹配的水中目标运动分析研究[J]. 兵工学报, 2019, 40(5): 1038–1049. doi: 10.3969/j.issn.1000-1093.2019.05.017

    XU Guojun, ZHANG Lin, HAN Mei, et al. Research on the underwater target motion analysis based on acoustic field interference feature match[J]. Acta Armamentarii, 2019, 40(5): 1038–1049. doi: 10.3969/j.issn.1000-1093.2019.05.017
    [18]
    邱龙皓, 梁国龙, 王晋晋. 浅海宽带声源深度判决方法[J]. 船舶力学, 2020, 24(2): 251–260. doi: 10.3969/j.issn.1007-7294.2020.02.014

    QIU Longhao, LIANG Guolong, and WANG Jinjin. Depth discrimination for broadband acoustic source in shallow water[J]. Journal of Ship Mechanics, 2020, 24(2): 251–260. doi: 10.3969/j.issn.1007-7294.2020.02.014
    [19]
    程玉胜, 陈飞, 王一宾. 基于粗糙集的数据流多标记分布特征选择[J]. 计算机应用, 2018, 38(11): 3105–3111,3118. doi: 10.11772/j.issn.1001-9081.2018041275

    CHENG Yusheng, CHEN Fei, and WANG Yibin. Feature selection for multi-label distribution learning with streaming data based on rough set[J]. Journal of Computer Applications, 2018, 38(11): 3105–3111,3118. doi: 10.11772/j.issn.1001-9081.2018041275
    [20]
    曹怀刚, 赵振东, 郭圣明, 等. 利用简正模态相位关系的浅海声源深度分辨方法[J]. 声学学报, 2020, 45(6): 801–810. doi: 10.15949/j.cnki.0371-0025.2020.06.002

    CAO Huaigang, ZHAO Zhendong, GUO Shengming, et al. The discrimination of source depth regions in shallow water based on mode phase relation[J]. Acta Acustica, 2020, 45(6): 801–810. doi: 10.15949/j.cnki.0371-0025.2020.06.002
    [21]
    吴国清, 李靖, 陈耀明, 等. 舰船噪声识别(II)—线谱稳定性和唯一性[J]. 声学学报, 1999, 24(1): 6–11. doi: 10.15949/j.cnki.0371-0025.1999.01.002

    WU Guoqing, LI Jing, CHEN Yaoming, et al. Ship radiated-noise recognition(II)—stability and uniqueness of line spectrum[J]. Acta Acustica, 1999, 24(1): 6–11. doi: 10.15949/j.cnki.0371-0025.1999.01.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (718) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return