Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZOU Liang, ZHANG Peng, CHEN Xun. Underdetermined Blind Source Separation Based on Third-order Statistics[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3960-3966. doi: 10.11999/JEIT210844
Citation: ZOU Liang, ZHANG Peng, CHEN Xun. Underdetermined Blind Source Separation Based on Third-order Statistics[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3960-3966. doi: 10.11999/JEIT210844

Underdetermined Blind Source Separation Based on Third-order Statistics

doi: 10.11999/JEIT210844
Funds:  The National Natural Science Foundation of China (61901003, 61922075), The Natural Science Foundation of Jiangsu Province (BK20190623)
  • Received Date: 2021-08-18
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-01-30
  • Available Online: 2022-03-20
  • Publish Date: 2022-11-14
  • Blind Source Separation (BSS) aims to separate the source signals from the mixed observations without any information about the mixing process and the source signals, which is a major area in the signal processing field. In Underdetermined Blind Source Separation (UBSS), the number of observed signals is less than the number of source signals, and thus UBSS is much closer to reality than the determined/overdetermined BSS. However, the observations are always disturbed by noise, deteriorating the performance of traditional underdetermined blind source separation based on second-order statistics and signal sparsity. Taking the advantage of third-order statistics in dealing with symmetric noise, a novel mixing matrix estimation method based on the third-order statistics of the observations is proposed. Considering the autocorrelations of the sources, a sequence of third-order statistics of the observations corresponding to multiple delays are calculated and stacked into a fourth-order tensor. Then the mixing matrix is estimated via the canonical polyadic decomposition of the fourth-order tensor. Furthermore, the generalized Gaussian distribution is employed to characterize the sources and the expectation-maximum algorithm is utilized to recover the sources. The results from 1000 Monte Carlo experiments demonstrate that the proposed method is robust to the noise. The proposed method archives the normalized mean square error of –20.35 dB and the mean absolute correlation coefficient between the recovered sources and the real ones of 0.84 when the signal to noise ratios equal to 15 dB for the cases with 3×4 mixing matrices. Simulation results demonstrate that the proposed algorithm yields superior performances in comparing with state-of-the-art underdetermined blind source separation methods.
  • loading
  • [1]
    BRIDWELL D A, RACHAKONDA S, SILVA R F, et al. Spatiospectral decomposition of multi-subject EEG: Evaluating blind source separation algorithms on real and realistic simulated data[J]. Brain Topography, 2018, 31(1): 47–61. doi: 10.1007/s10548-016-0479-1
    [2]
    周媛媛, 常莹, 陈浩, 等. 基于参考台的盲源分离法在抑制地磁场近场噪音中的应用研究[J]. 地球物理学报, 2019, 62(2): 572–586. doi: 10.6038/cjg2019M0551

    ZHOU Yuanyuan, CHANG Ying, CHEN Hao, et al. Application of reference-based blind source separation method in the reduction of near-field noise of geomagnetic measurements[J]. Chinese Journal of Geophysics, 2019, 62(2): 572–586. doi: 10.6038/cjg2019M0551
    [3]
    DU Bo, WANG Shaodong, XU Chang, et al. Multi-task learning for blind source separation[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4219–4231. doi: 10.1109/TIP.2018.2836324
    [4]
    张天骐, 张华伟, 刘董华, 等. 基于区域增长校正的频域盲源分离排序算法[J]. 电子与信息学报, 2019, 41(3): 580–587. doi: 10.11999/JEIT180386

    ZHANG Tianqi, ZHANG Huawei, LIU Donghua, et al. Frequency domain blind source separation permutation algorithm based on regional growth correction[J]. Journal of Electronics &Information Technology, 2019, 41(3): 580–587. doi: 10.11999/JEIT180386
    [5]
    王泽林, 陈锴, 卢晶. 车载场景结合盲源分离与多说话人状态判决的语音抽取[J]. 声学学报, 2020, 45(5): 696–706. doi: 10.15949/j.cnki.0371-0025.2020.05.009

    WANG Zelin, CHEN Kai, and LU Jing. Speech extraction based on blind source separation and multi-talker status tracking in automobile environment[J]. Acta Acustica, 2020, 45(5): 696–706. doi: 10.15949/j.cnki.0371-0025.2020.05.009
    [6]
    COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287–314. doi: 10.1016/0165-1684(94)90029-9
    [7]
    HYVÄRINEN A and OJA E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997, 9(7): 1483–1492. doi: 10.1162/neco.1997.9.7.1483
    [8]
    季策, 穆文欢, 耿蓉. 基于A-DBSCAN的欠定盲源分离算法[J]. 系统工程与电子技术, 2020, 42(12): 2676–2683. doi: 10.3969/j.issn.1001-506X.2020.12.02

    JI Ce, MU Wenhuan, and GENG Rong. Underdetermined blind source separation algorithm based on A-DBSCAN[J]. Systems Engineering and Electronics, 2020, 42(12): 2676–2683. doi: 10.3969/j.issn.1001-506X.2020.12.02
    [9]
    李红光, 郭英, 张东伟, 等. 基于欠定盲源分离的同步跳频信号网台分选[J]. 电子与信息学报, 2021, 43(2): 319–328. doi: 10.11999/JEIT190920

    LI Hongguang, GUO Ying, ZHANG Dongwei, et al. Synchronous frequency hopping signal network station sorting based on underdetermined blind source separation[J]. Journal of Electronics &Information Technology, 2021, 43(2): 319–328. doi: 10.11999/JEIT190920
    [10]
    CUI Wei, GUO Shuxu, REN Lin, et al. Underdetermined blind source separation for linear instantaneous mixing system in the non-cooperative wireless communication[J]. Physical Communication, 2021, 45: 101255. doi: 10.1016/j.phycom.2020.101255
    [11]
    YILMAZ O and RICKARD S. Blind separation of speech mixtures via time-frequency masking[J]. IEEE Transactions on Signal Processing, 2004, 52(7): 1830–1847. doi: 10.1109/TSP.2004.828896
    [12]
    ABRARD F and DEVILLE Y. Blind separation of dependent sources using the “time-frequency ratio of mixtures” approach[C]. The Seventh International Symposium on Signal Processing and its Applications, Paris, France, 2003: 81–84.
    [13]
    REJU V G, KOH S N, and SOON Y I. An algorithm for mixing matrix estimation in instantaneous blind source separation[J]. Signal Processing, 2009, 89(9): 1762–1773. doi: 10.1016/j.sigpro.2009.03.017
    [14]
    KIM S G and YOO C D. Underdetermined blind source separation based on subspace representation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2604–2614. doi: 10.1109/TSP.2009.2017570
    [15]
    ZHEN Liangli, PENG Dezhong, YI Zhang, et al. Underdetermined blind source separation using sparse coding[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(12): 3102–3108. doi: 10.1109/TNNLS.2016.2610960
    [16]
    ZHEN Liangli, PENG Dezhong, ZHANG Haixian, et al. Underdetermined mixing matrix estimation by exploiting sparsity of sources[J]. Measurement, 2020, 152: 107268. doi: 10.1016/j.measurement.2019.107268
    [17]
    DE LATHAUWER L and CASTAING J. Blind identification of underdetermined mixtures by simultaneous matrix diagonalization[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1096–1105. doi: 10.1109/TSP.2007.908929
    [18]
    ZOU Liang, CHEN Xun, and WANG Z J. Underdetermined joint blind source separation for two datasets based on tensor decomposition[J]. IEEE Signal Processing Letters, 2016, 23(5): 673–677. doi: 10.1109/LSP.2016.2546687
    [19]
    吕晓德, 孙正豪, 刘忠胜, 等. 基于二阶统计量盲源分离算法的无源雷达同频干扰抑制研究[J]. 电子与信息学报, 2020, 42(5): 1288–1296. doi: 10.11999/JEIT190178

    LÜ Xiaode, SUN Zhenghao, LIU Zhongsheng, et al. Research on suppressing co-channel interference of passive radar based on blind source separation using second order statistics[J]. Journal of Electronics &Information Technology, 2020, 42(5): 1288–1296. doi: 10.11999/JEIT190178
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (656) PDF downloads(139) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return