Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI An, DAI Longbin, YU Lisu, WANG Zhen. Resource Allocation for Unmanned Aerial Vehicle-assisted Mobile Edge Computing to Minimize Weighted Energy Consumption[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3858-3865. doi: 10.11999/JEIT210832
Citation: LI An, DAI Longbin, YU Lisu, WANG Zhen. Resource Allocation for Unmanned Aerial Vehicle-assisted Mobile Edge Computing to Minimize Weighted Energy Consumption[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3858-3865. doi: 10.11999/JEIT210832

Resource Allocation for Unmanned Aerial Vehicle-assisted Mobile Edge Computing to Minimize Weighted Energy Consumption

doi: 10.11999/JEIT210832
Funds:  The National Natural Science Foundation of China (61761030, 62161024), The Key Research and Development Project of Jiangxi Province (20202BBE53019), China Postdoctoral Science Foundation (2021TQ0136), The State Key Laboratory of Computer Architecture Project (CARCHB202019)
  • Received Date: 2021-08-13
  • Rev Recd Date: 2021-10-29
  • Available Online: 2021-11-14
  • Publish Date: 2022-11-14
  • For the Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) system, it is proposed to balance the energy consumption of UAV and ground equipment by adding a weight factor to the energy consumption of ground equipment, considering that their energy consumption is not in the same order of magnitude. At the same time, to meet the requirements of ground equipment tasks, the weighted energy consumption of UAV and ground equipment are minimized by joint optimization of UAV trajectory and system resource allocation. The formulated problem is highly non-convex, thus an alternating optimization based two-stage resource allocation optimization scheme is proposed to solve it. In the first stage, given the unloading power of the ground equipment, the Successive Convex Approximation (SCA) method is used to solve the UAV trajectory optimization, Central Processing Unit (CPU) frequency resource allocation and unloading time allocation. In the second stage, the unloading power allocation of ground equipment is optimized. Such two-stage alternating and iterative optimization is used to find the sub-optimal solution of the original problem. The effectiveness of the proposed scheme in reducing system energy consumption is verified by simulation results.
  • loading
  • [1]
    YOU Changsheng, HUANG Kaibin, and CHAE H. Energy efficient mobile cloud computing powered by wireless energy transfer[J]. IEEE Journal on Selected Areas in Communications, 2016, 34(5): 1757–1771. doi: 10.1109/JSAC.2016.2545382
    [2]
    SARKAR S, CHATTERJEE S, and MISRA S. Assessment of the suitability of fog computing in the context of internet of things[J]. IEEE Transactions on Cloud Computing, 2018, 6(1): 46–59. doi: 10.1109/TCC.2015.2485206
    [3]
    LIN Xingqin, YAJNANARAYANA V, MURUGANATHAN S D, et al. The sky is not the limit: LTE for unmanned aerial vehicles[J]. IEEE Communications Magazine, 2018, 56(4): 204–210. doi: 10.1109/MCOM.2018.1700643
    [4]
    WANG Jinyuan, MA Yang, LU Rongrong, et al. Hovering UAV-Based FSO communications: Channel modelling, performance analysis, and parameter optimization[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(10): 2946–2959. doi: 10.1109/JSAC.2021.3088656
    [5]
    董超, 沈赟, 屈毓锛. 基于无人机的边缘智能计算研究综述[J]. 智能科学与技术学报, 2020, 2(3): 227–239. doi: 10.11959/j.issn.2096–6652.202025.

    DONG Chao, SHEN Yun, and QU Yuben. A survey of UAV-based edge intelligent computing[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(3): 227–239. doi: 10.11959/j.issn.2096–6652.202025.
    [6]
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    [7]
    HU Qiyu, CAI Yunlong, YU Guanding, et al. Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J]. IEEE Internet of Things Journal, 2019, 6(2): 1879–1892. doi: 10.1109/JIOT.2018.2878876
    [8]
    ZENG Ming, DU Rong, FODOR C, et al. Computation rate maximization for wireless powered mobile edge computing with NOMA[C]. IEEE 20th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), Washington, USA, 2019: 1–9. doi: 10.1109/WoWMoM.2019.8792997.
    [9]
    ZHOU Fuhui and HU R Q. Computation efficiency maximization in wireless-powered mobile edge computing networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3170–3184. doi: 10.1109/TWC.2020.2970920
    [10]
    吴启晖, 吴伟. 无人机辅助边缘计算的能量效率最大化算法设计[J]. 通信学报, 2020, 41(10): 15–24. doi: 10.11959/j.issn.1000-436x.2020204

    WU Qihui and WU Wei. Algorithm design on energy efficiency maximization for UAV-assisted edge computing[J]. Journal on Communications, 2020, 41(10): 15–24. doi: 10.11959/j.issn.1000-436x.2020204
    [11]
    ZHOU Yi, PAN Cunhua, PHEE L Y, et al. Secure communications for UAV-enabled mobile edge computing systems[J]. IEEE Transactions on Communications, 2020, 68(1): 376–388. doi: 10.1109/TCOMM.2019.2947921
    [12]
    DIAO Xianbang, ZHENG Jianchao, WU Yuan, et al. Joint trajectory design, task data, and computing resource allocations for NOMA-based and UAV-assisted mobile edge computing[J]. IEEE Access, 2019, 7: 117448–117459. doi: 10.1109/ACCESS.2019.2936437
    [13]
    HUA Meng, WANG Yi, ZHANG Zhengming, et al. Optimal resource partitioning and bit allocation for UAV-enabled mobile edge computing[C]. IEEE 88th Vehicular Technology Conference, Chicago, USA, 2018: 1–6. doi: 10.1109/VTCFall.2018.8690707.
    [14]
    ZHAN Chen, HU Han, SUI Xiufeng, et al. Completion time and energy optimization in the UAV-enabled mobile-edge computing system[J]. IEEE Internet of Things Journal, 2020, 7(8): 7808–7822. doi: 10.1109/JIOT.2020.2993260
    [15]
    LIU Yuan, XIONG Ke, NI Qiang, et al. UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization[J]. IEEE Internet of Things Journal, 2020, 7(4): 2777–2790. doi: 10.1109/JIOT.2019.2958975
    [16]
    MEI Haibo, WANG Kezhi, ZHOU Dongdai, et al. Joint trajectory-task-cache optimization in UAV-enabled mobile edge networks for cyber-physical system[J]. IEEE Access, 2019, 7: 156476–156488. doi: 10.1109/ACCESS.2019.2949032
    [17]
    ZHANG Xiaochen, ZHANG Jiao, XIONG Jun, et al. Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA[J]. IEEE Internet of Things Journal, 2020, 7(6): 5613–5627. doi: 10.1109/JIOT.2020.2980035
    [18]
    ZHANG Tiankui, XU Yu, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505–5516. doi: 10.1109/TII.2019.2948406
    [19]
    ZENG Yong, XU Jie, and ZHANG Rui. Energy minimization for wireless communication with rotary-wing UAV[J]. IEEE Transactions on Wireless Communications, 2019, 18(4): 2329–2345. doi: 10.1109/TWC.2019.2902559
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (2735) PDF downloads(352) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return