Advanced Search
Volume 44 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
WANG Jing, HE Yajin, LEI Ke, LIU Xiangyang. Construction of Fractional Repetition Codes Using Difference Set Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4025-4033. doi: 10.11999/JEIT210829
Citation: WANG Jing, HE Yajin, LEI Ke, LIU Xiangyang. Construction of Fractional Repetition Codes Using Difference Set Matrix[J]. Journal of Electronics & Information Technology, 2022, 44(11): 4025-4033. doi: 10.11999/JEIT210829

Construction of Fractional Repetition Codes Using Difference Set Matrix

doi: 10.11999/JEIT210829
Funds:  The National Natural Science Foundation of China (62001059), The Key Research and Development Project of Shaanxi Province (2021GY-019)
  • Received Date: 2021-08-13
  • Rev Recd Date: 2022-05-07
  • Available Online: 2022-05-11
  • Publish Date: 2022-11-14
  • Considering the problem of effective repair of minimum bandwidth regenerating codes, a construction algorithm of Fractional Repetition (FR) codes based on difference set matrix is proposed. The orthogonal array is constructed by using the difference set matrix and Kronecker sum. According to the orthogonal array, each row of the same element is taken as the coding blocks of the node to obtain the corresponding FR codes. As a result, the constructed FR codes can be divided into multiple parallel classes, and at the repetition of the data blocks and the storage capacity of the node can be adjusted. The simulation results show that compared with the traditional Reed-Solomon (RS) codes and Simple Regenerating Codes (SRC), the constructed FR codes have better performance in terms of repair complexity, repair bandwidth overhead, and repair locality. Although the repair selectivity is a table-based repair scheme, the selectivity can still reach high.
  • loading
  • [1]
    LIU Ying and VLASSOV V. Replication in distributed storage systems: State of the art, possible directions, and open issues[C]. 2013 International Conference on Cyberenabled Distributed Computing and Knowledge Discovery, Beijing, China, 2013: 225–232.
    [2]
    LI Jun and LI Baochun. Erasure coding for cloud storage systems: A survey[J]. Tsinghua Science and Technology, 2013, 18(3): 259–272. doi: 10.1109/TST.2013.6522585
    [3]
    GHEMAWAT S, GOBIOFF H, and LEUNG S T. The Google file system[J]. ACM SIGOPS Operating Systems Review, 2003, 37(5): 29–43. doi: 10.1145/1165389.945450
    [4]
    HUANG Cheng, SIMITCI H, XU Yikang, et al. Erasure coding in windows azure storage[C]. The 2012 USENIX Annual Technical Conference, Boston, USA, 2012: 15–26.
    [5]
    SATHIAMOORTHY M, ASTERIS M, PAPAILIOPOULOS D, et al. XORing elephants: Novel erasure codes for big data[J]. Proceedings of the VLDB Endowment, 2013, 6(5): 325–336. doi: 10.14778/2535573.2488339
    [6]
    DIMAKIS A G, GODFREY P B, WU Yunnan, et al. Network coding for distributed storage systems[J]. IEEE Transactions on Information Theory, 2010, 56(9): 4539–4551. doi: 10.1109/TIT.2010.2054295
    [7]
    PAPAILIOPOULOS D S and DIMAKIS A G. Distributed storage codes through Hadamard designs[C]. 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011: 1230–1234.
    [8]
    RASHMI K V, SHAH N B, and KUMAR P V. Optimal exact-regenerating codes for distributed storage at the MSR and MBR points via a product-matrix construction[J]. IEEE Transactions on Information Theory, 2011, 57(8): 5227–5239. doi: 10.1109/TIT.2011.2159049
    [9]
    GUAN Sheng, KAN Haibin, WEN Jie, et al. A new construction of exact-repair MSR codes using linearly dependent vectors[J]. IEEE Communications Letters, 2017, 21(8): 1691–1694. doi: 10.1109/LCOMM.2017.2700862
    [10]
    GOPALAN P, HUANG Cheng, SIMITCI H, et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6925–6934. doi: 10.1109/TIT.2012.2208937
    [11]
    PAPAILIOPOULOS D S, LUO Jianqiang, DIMAKIS A G, et al. Simple regenerating codes: Network coding for cloud storage[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2801–2805.
    [12]
    WANG Jing, YAN Zhiyuan, LI K C, et al. Local codes with cooperative repair in distributed storage of cyber-physical-social systems[J]. IEEE Access, 2020, 8: 38622–38632. doi: 10.1109/ACCESS.2020.2975577
    [13]
    HAO Jie, SHUM K W, XIA Shutao, et al. Optimal locally repairable codes for parallel reading[J]. IEEE Access, 2020, 8: 80447–80453. doi: 10.1109/ACCESS.2020.2992188
    [14]
    EL ROUAYHEB S and RAMCHANDRAN K. Fractional repetition codes for repair in distributed storage systems[C]. 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, USA, 2010: 1510–1517.
    [15]
    ZHOU Tai, LI Hui, ZHU Bing, et al. STORE: Data recovery with approximate minimum network bandwidth and disk I/O in distributed storage systems[C]. 2014 IEEE International Conference on Big Data, Washington, USA, 2014: 33–38.
    [16]
    OLMEZ O and RAMAMOORTHY A. Fractional repetition codes with flexible repair from combinatorial designs[J]. IEEE Transactions on Information Theory, 2016, 62(4): 1565–1591. doi: 10.1109/TIT.2016.2531720
    [17]
    AYDINIAN H and BOCHE H. Fractional repetition codes based on partially ordered sets[C]. 2017 IEEE Information Theory Workshop (ITW), Kaohsiung, China, 2017: 51–55.
    [18]
    ZHU Bing, SHUM K W, LI Hui, et al. On the duality and file size hierarchy of fractional repetition codes[J]. The Computer Journal, 2019, 62(1): 150–160. doi: 10.1093/comjnl/bxy094
    [19]
    ZHU Bing, SHUM K W, WANG Weiping, et al. On the optimal minimum distance of fractional repetition codes[C]. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6.
    [20]
    ZHU Bing, SHUM K W, and LI Hui. Fractional repetition codes with optimal reconstruction degree[J]. IEEE Transactions on Information Theory, 2020, 66(2): 983–994. doi: 10.1109/TIT.2019.2929788
    [21]
    YU Wenjun, ZHANG Xiande, and GE Gennian. Optimal fraction repetition codes for access-balancing in distributed storage[J]. IEEE Transactions on Information Theory, 2021, 67(3): 1630–1640. doi: 10.1109/TIT.2020.3039901
    [22]
    SU Yisheng. Optimal pliable fractional repetition codes that are locally recoverable: A bipartite graph approach[J]. IEEE Transactions on Information Theory, 2019, 65(2): 985–999. doi: 10.1109/TIT.2018.2876284
    [23]
    PRAJAPATI S A, DEB S, and GUPTA M K. On some universally good fractional repetition codes[C]. 2020 International Conference on COMmunication Systems & NETworks (COMSNETS), Bengaluru, India, 2020: 404–411.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (668) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return