Citation: | WU Wei, HAN Xianxiu, FAN Yingle. A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818 |
[1] |
EDRESS I, AL-SABAWI E A, and YOUNUS M D. Design of fractional-order sobel filters for edge detections[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1152(1): 012028. doi: 10.1088/1757-899X/1152/1/012028
|
[2] |
GRIGORESCU C, PETKOV N, and WESTENBERG M A. Contour detection based on nonclassical receptive field inhibition[J]. IEEE Transactions on Image Processing, 2003, 12(7): 729–739. doi: 10.1109/TIP.2003.814250
|
[3] |
YANG Kaifu, LI Chaoyi, and LI Yongjie. Multifeature-based surround inhibition improves contour detection in natural images[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5020–5032. doi: 10.1109/TIP.2014.2361210
|
[4] |
MELOTTI D, HEIMBACH K, RODRÍGUEZ-SÁNCHEZ A, et al. A robust contour detection operator with combined push-pull inhibition and surround suppression[J]. Information Sciences, 2020, 524: 229–240. doi: 10.1016/j.ins.2020.03.026
|
[5] |
CHEN Zekun and CAI Rongtai. Contour detection by simulating the curvature cell in the visual cortex and its application to object classification[J]. IEEE Access, 2020, 8: 74472–74484. doi: 10.1109/ACCESS.2020.2988496
|
[6] |
CHEN Shanshan and CAI Houde. Pulvinar involves in multiple pathways of emotion processing[J]. Advances in Psychological Science, 2015, 23(2): 234–240. doi: 10.3724/SP.J.1042.2015.00234
|
[7] |
LIDDELL B J, BROWN K J, KEMP A H, et al. A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear[J]. NeuroImage, 2005, 24(1): 235–243. doi: 10.1016/j.neuroimage.2004.08.016
|
[8] |
DICARLO J J, ZOCCOLAN D, and RUST N C. How does the brain solve visual object recognition?[J]. Neuron, 2012, 73(3): 425–434. doi: 10.1016/j.neuron.2012.01.010
|
[9] |
EVANS H M. The Emotional brain: The mysterious underpinnings of emotional life[J]. Neuropsychoanalysis, 2000, 2(1): 91–95. doi: 10.1080/15294145.2000.10773288
|
[10] |
WASSLE H and BOYCOTT B B. Functional architecture of the mammalian retina[J]. Physiological Reviews, 1991, 71(2): 447–480. doi: 10.1152/physrev.1991.71.2.447
|
[11] |
WANG Luping, SARNAIK R, RANGARAJAN K, et al. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse[J]. Journal of Neuroscience, 2010, 30(49): 16573–16584. doi: 10.1523/JNEUROSCI.3305-10.2010
|
[12] |
DE FRANCESCHI G and SOLOMON S G. Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse[J]. The Journal of Physiology, 2018, 596(24): 6307–6332. doi: 10.1113/JP276964
|
[13] |
LUSSIEZ R, CHANAURIA N, OUELHAZI A, et al. Effects of visual adaptation on orientation selectivity in cat secondary visual cortex[J]. The European Journal of Neuroscience, 2021, 53(2): 588–600. doi: 10.1111/ejn.14967
|
[14] |
AHMADLOU M, ZWEIFEL L S, and HEIMEL J A. Functional modulation of primary visual cortex by the superior colliculus in the mouse[J]. Nature Communications, 2018, 9(1): 3895. doi: 10.1038/s41467-018-06389-6
|
[15] |
HAN J K, KIM M S, KIM S I, et al. Investigation of leaky characteristic in a single-transistor-based leaky integrate-and-fire neuron[J]. IEEE Transactions on Electron Devices, 2021, 68(11): 5912–5915. doi: 10.1109/TED.2021.3110830
|
[16] |
ALPERT S, GALUN M, BRANDT A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315–327. doi: 10.1109/TPAMI.2011.130
|
[17] |
KANEDA K, YANAGAWA Y, and ISA T. Inputs from visual cortex contribute to lateral inhibition in the mouse superior colliculus in vivo[J]. Neuroscience Research, 2009, 65(S1): S172. doi: 10.1016/j.neures.2009.09.905
|
[18] |
CHEN Yanmei, NI Yiling, ZHOU Jianhong, et al. The amygdala responds rapidly to flashes linked to direct retinal innervation: A flash-evoked potential study across cortical and subcortical visual pathways[J]. Neuroscience Bulletin, 2021, 37(8): 1107–1118. doi: 10.1007/s12264-021-00699-4
|
[19] |
CHEN Shu'nan, FAN Yingle, FANG Tao, et al. A contour detection method based on hierarchical structure response model in primary visual pathway[J]. Acta Automatica Sinica, 2022, 48(3): 820–833. doi: 10.16383/j.aas.c200046
|
[20] |
MARTIN D R, FOWLKES C C, and MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530–549. doi: 10.1109/TPAMI.2004.1273918
|
[21] |
LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939–1946. doi: 10.1109/TPAMI.2018.2878849
|
[22] |
XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1395–1403.
|
[23] |
YANG Kaifu, GAO Shaobing, GUO Cefeng, et al. Boundary detection using double-opponency and spatial sparseness constraint[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2565–2578. doi: 10.1109/TIP.2015.2425538
|