Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WU Wei, HAN Xianxiu, FAN Yingle. A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818
Citation: WU Wei, HAN Xianxiu, FAN Yingle. A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2512-2521. doi: 10.11999/JEIT210818

A Contour Detection Method Based on Interactive Perception Mechanism of Dual Visual Pathways

doi: 10.11999/JEIT210818
Funds:  The National Natural Science Foundation of China(61501154)
  • Received Date: 2021-08-11
  • Rev Recd Date: 2022-05-10
  • Available Online: 2022-05-20
  • Publish Date: 2022-07-25
  • According to the mechanism of visual information interactive perception between dual Visual Pathways(VP) in the biological vision system, a new method of contour detection is proposed. Considering the visual stimulus in the hypocritical pathway flowing through multi-level and different-scale receptive fields, a multi-scale contour fusion contour perception model is proposed. Based on the contrast adaptation mechanism and directional sensitivity of the visual pathway on the cortex, salient visual features are extracted. The interactive perception mechanism of the dual vision pathway is simulated, a pulse coding model is constructed guided by the information flow interaction in the V1 cortex, to extract the saliency contour. An inhibition model of feature modulation non-classical receptive field is proposed in the Superior Colliculus(SC) shallow layer, to achieve texture inhibition. Finally, the contour response results in the dual-view path is modified and fused to obtain the final contour response. For the test of the RUG40 image library, the optimal average P index of the whole dataset and each graph is 0.51 and 0.57 respectively. For the test of the BSDS500 image library, the Optimal Scale (ODS) of the Dataset is 0.68. The results show that the method in this paper can effectively highlight the outline of the subject and suppress the textured background, which provides a new idea for the subsequent image understanding and analysis based on the visual mechanism.
  • loading
  • [1]
    EDRESS I, AL-SABAWI E A, and YOUNUS M D. Design of fractional-order sobel filters for edge detections[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1152(1): 012028. doi: 10.1088/1757-899X/1152/1/012028
    [2]
    GRIGORESCU C, PETKOV N, and WESTENBERG M A. Contour detection based on nonclassical receptive field inhibition[J]. IEEE Transactions on Image Processing, 2003, 12(7): 729–739. doi: 10.1109/TIP.2003.814250
    [3]
    YANG Kaifu, LI Chaoyi, and LI Yongjie. Multifeature-based surround inhibition improves contour detection in natural images[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5020–5032. doi: 10.1109/TIP.2014.2361210
    [4]
    MELOTTI D, HEIMBACH K, RODRÍGUEZ-SÁNCHEZ A, et al. A robust contour detection operator with combined push-pull inhibition and surround suppression[J]. Information Sciences, 2020, 524: 229–240. doi: 10.1016/j.ins.2020.03.026
    [5]
    CHEN Zekun and CAI Rongtai. Contour detection by simulating the curvature cell in the visual cortex and its application to object classification[J]. IEEE Access, 2020, 8: 74472–74484. doi: 10.1109/ACCESS.2020.2988496
    [6]
    CHEN Shanshan and CAI Houde. Pulvinar involves in multiple pathways of emotion processing[J]. Advances in Psychological Science, 2015, 23(2): 234–240. doi: 10.3724/SP.J.1042.2015.00234
    [7]
    LIDDELL B J, BROWN K J, KEMP A H, et al. A direct brainstem-amygdala-cortical 'alarm' system for subliminal signals of fear[J]. NeuroImage, 2005, 24(1): 235–243. doi: 10.1016/j.neuroimage.2004.08.016
    [8]
    DICARLO J J, ZOCCOLAN D, and RUST N C. How does the brain solve visual object recognition?[J]. Neuron, 2012, 73(3): 425–434. doi: 10.1016/j.neuron.2012.01.010
    [9]
    EVANS H M. The Emotional brain: The mysterious underpinnings of emotional life[J]. Neuropsychoanalysis, 2000, 2(1): 91–95. doi: 10.1080/15294145.2000.10773288
    [10]
    WASSLE H and BOYCOTT B B. Functional architecture of the mammalian retina[J]. Physiological Reviews, 1991, 71(2): 447–480. doi: 10.1152/physrev.1991.71.2.447
    [11]
    WANG Luping, SARNAIK R, RANGARAJAN K, et al. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse[J]. Journal of Neuroscience, 2010, 30(49): 16573–16584. doi: 10.1523/JNEUROSCI.3305-10.2010
    [12]
    DE FRANCESCHI G and SOLOMON S G. Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse[J]. The Journal of Physiology, 2018, 596(24): 6307–6332. doi: 10.1113/JP276964
    [13]
    LUSSIEZ R, CHANAURIA N, OUELHAZI A, et al. Effects of visual adaptation on orientation selectivity in cat secondary visual cortex[J]. The European Journal of Neuroscience, 2021, 53(2): 588–600. doi: 10.1111/ejn.14967
    [14]
    AHMADLOU M, ZWEIFEL L S, and HEIMEL J A. Functional modulation of primary visual cortex by the superior colliculus in the mouse[J]. Nature Communications, 2018, 9(1): 3895. doi: 10.1038/s41467-018-06389-6
    [15]
    HAN J K, KIM M S, KIM S I, et al. Investigation of leaky characteristic in a single-transistor-based leaky integrate-and-fire neuron[J]. IEEE Transactions on Electron Devices, 2021, 68(11): 5912–5915. doi: 10.1109/TED.2021.3110830
    [16]
    ALPERT S, GALUN M, BRANDT A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 315–327. doi: 10.1109/TPAMI.2011.130
    [17]
    KANEDA K, YANAGAWA Y, and ISA T. Inputs from visual cortex contribute to lateral inhibition in the mouse superior colliculus in vivo[J]. Neuroscience Research, 2009, 65(S1): S172. doi: 10.1016/j.neures.2009.09.905
    [18]
    CHEN Yanmei, NI Yiling, ZHOU Jianhong, et al. The amygdala responds rapidly to flashes linked to direct retinal innervation: A flash-evoked potential study across cortical and subcortical visual pathways[J]. Neuroscience Bulletin, 2021, 37(8): 1107–1118. doi: 10.1007/s12264-021-00699-4
    [19]
    CHEN Shu'nan, FAN Yingle, FANG Tao, et al. A contour detection method based on hierarchical structure response model in primary visual pathway[J]. Acta Automatica Sinica, 2022, 48(3): 820–833. doi: 10.16383/j.aas.c200046
    [20]
    MARTIN D R, FOWLKES C C, and MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530–549. doi: 10.1109/TPAMI.2004.1273918
    [21]
    LIU Yun, CHENG Mingming, HU Xiaowei, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1939–1946. doi: 10.1109/TPAMI.2018.2878849
    [22]
    XIE Saining and TU Zhuowen. Holistically-nested edge detection[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1395–1403.
    [23]
    YANG Kaifu, GAO Shaobing, GUO Cefeng, et al. Boundary detection using double-opponency and spatial sparseness constraint[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2565–2578. doi: 10.1109/TIP.2015.2425538
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (486) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return