Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
LUO Hongyan, ZHOU Luoyi, ZHAO Zhen, GUO Hong, FENG Xiaobo. Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693
Citation: LUO Hongyan, ZHOU Luoyi, ZHAO Zhen, GUO Hong, FENG Xiaobo. Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693

Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration

doi: 10.11999/JEIT210693
Funds:  The National Natural Science Foundation of China (Z20190224), The Graduate Research and Innovation Foundation of Chongqing, China (CYS19056)
  • Received Date: 2021-07-12
  • Rev Recd Date: 2022-07-04
  • Available Online: 2022-07-05
  • Publish Date: 2022-09-19
  • In view of the problems of slow calculation speed of digital holographic reconstruction algorithm, weak real-time application ability and poor cross-platform portability of existing GPU acceleration strategies, a scheme is proposed based on Open Computing Language (OpenCL) architecture to improve the execution efficiency of digital holographic reconstruction algorithm. In more details, the heterogeneous collaborative computing capabilities of the OpenCL architecture is fully used to design a CPU+GPU heterogeneous operation for the digital holographic convolutional reconstruction algorithm, which is programmed in the data parallel mode. The tests are carried out on the digital holograms in various image resolutions and on the different GPU acceleration platforms. The results indicate that the average execution time of this acceleration strategy is approximately an order of magnitude lower than that of the CPU, the highest total acceleration ratio is 54.2, and the parallel computing acceleration ratio even reaches up to 94.7. Characterized by a scale growth, good cross-platform portability and significant acceleration efficiency, it is more suitable for the engineering realization of digital holographic technology, especially in the real-time applications.
  • loading
  • [1]
    刘俊, 梁霄, 王淦诚, 等. 微纳气泡的三维动态表征[J]. 净水技术, 2021, 40(2): 67–74,126. doi: 10.15890/j.cnki.jsjs.2021.02.007

    LIU Jun, LIANG Xiao, WANG Gancheng, et al. Three-dimensional dynamic characterization of microbubbles[J]. Water Purification Technology, 2021, 40(2): 67–74,126. doi: 10.15890/j.cnki.jsjs.2021.02.007
    [2]
    WU Peng, ZHANG Dejie, YUAN Jing, et al. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography[J]. Optics Express, 2022, 30(4): 5177–5191. doi: 10.1364/OE.451409
    [3]
    税云秀, 胡琳, 戴姚辉, 等. 基于数字全息的回转类机械零件三维显示[J]. 激光与光电子学进展, 2020, 57(6): 060901.

    SHUI Yunxiu, HU Lin, DAI Yaohui, et al. Three-dimensional display of rotary mechanical parts based on digital holography[J]. Laser &Optoelectronics Progress, 2020, 57(6): 060901.
    [4]
    CHEN Duofang, WANG Lin, LUO Xixin, et al. Resolution and contrast enhancement for Lensless digital holographic microscopy and its application in biomedicine[J]. Photonics, 2022, 9(5): 358. doi: 10.3390/photonics9050358
    [5]
    GAO Pan, WANG Jun, GAO Yangzi, et al. Observation on the droplet ranging from 2 to 16 μm in cloud droplet size distribution based on digital holography[J]. Remote Sensing, 2022, 14(10): 2414. doi: 10.3390/rs14102414
    [6]
    CHANG Xuyang, BIAN liheng, GAO Yunhui, et al. Plug-and-play pixel super-resolution phase retrieval for digital holography[J]. Optics Letters, 2022, 47(11): 2658–2661. doi: 10.1364/OL.458117
    [7]
    马静, 邸江磊, 肖锋. OpenMP并行程序在数字全息三维重构中的应用[J]. 计算机技术与发展, 2018, 28(3): 150–153,159. doi: 10.3969/j.issn.1673-629X.2018.03.032

    MA Jing, DI Jianglei, and XIAO Feng. Application of OpenMP parallel program in 3D reconstruction of digital holography[J]. Computer Technology and Development, 2018, 28(3): 150–153,159. doi: 10.3969/j.issn.1673-629X.2018.03.032
    [8]
    CHEN Huanyuan, HWANG W J, CHENG C J, et al. An FPGA-based autofocusing hardware architecture for digital holography[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 287–300. doi: 10.1109/TCI.2019.2892810
    [9]
    刘海, 赵志雄, 税云秀, 等. CUDA架构下的数字全息粒子三维速度矢量场快速重建[J]. 激光杂志, 2017, 38(4): 57–60. doi: 10.14016/j.cnki.jgzz.2017.04.057

    LIU Hai, ZHAO Zhixiong, SHUI Yunxiu, et al. High-speed digital holographic reconstruction of 3D particles velocity vector filed with CUDA[J]. Laser Journal, 2017, 38(4): 57–60. doi: 10.14016/j.cnki.jgzz.2017.04.057
    [10]
    SHIN J G, KIM J W, LEE J H, et al. Accurate reconstruction of digital holography using frequency domain zero padding[J]. SPIE, 2017, 10323, 103235H.
    [11]
    DOĞAR M, İLHAN H A, and ÖZCAN M. Real-time reconstruction of digital holograms with GPU[C]. SPIE 8644, Practical Holography XXVII: Materials & Applications, San Francisco, USA, 2013: 86440B.
    [12]
    王广俊, 王大勇, 王华英. 数字全息显微中常见重建算法比较[J]. 激光与光电子学进展, 2010, 47(3): 030901.

    WANG Guangjun, WANG Dayong, and WANG Huaying. Comparison of commonly used numerical reconstruction algorithms in digital holographic microscopy[J]. 2010, 47(3): 030901.
    [13]
    何希, 吴炎桃, 邸臻炜, 等. 基于图形处理器的形态学重建系统[J]. 计算机应用, 2019, 39(7): 2008–2013. doi: 10.11772/j.issn.1001-9081.2018122549

    HE Xi, WU Yantao, DI Zhenwei, et al. GPU-based morphological reconstruction system[J]. Journal of Computer Applications, 2019, 39(7): 2008–2013. doi: 10.11772/j.issn.1001-9081.2018122549
    [14]
    于梦华, 王双亭, 李英成, 等. 畸变差改正算法OpenCL并行加速研究[J]. 遥感信息, 2019, 34(3): 88–92. doi: 10.3969/j.issn.1000-3177.2019.03.014

    YU Menghua, WANG Shuangting, LI Yingcheng, et al. Distortion algorithm OpenCL parallel acceleration[J]. Remote Sensing Information, 2019, 34(3): 88–92. doi: 10.3969/j.issn.1000-3177.2019.03.014
    [15]
    KARIMI K, DICKSON N G, and HAMZE F. A performance comparison of CUDA and OpenCL[J]. arXiv: 1005.2581, 2010.
    [16]
    YU Leiming, NINA-PARAVECINO F, KAELI D R, et al. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms[J]. Journal of Biomedical Optics, 2018, 23(1): 010504. doi: 10.1117/1.JBO.23.1.010504
    [17]
    FANG Jianbin, VARBANESCU A L, and SIPS H. A comprehensive performance comparison of CUDA and OpenCL[C]. 2011 International Conference on Parallel Processing, Taipei, China, 2011: 216–225.
    [18]
    HOLM H H, BRODTKORB A R, and SAETRA M L. Performance and energy efficiency of CUDA and OpenCL for GPU computing using python[M]. FOSTER I, JOUBERT G R, KUCERA L, et al. Parallel Computing: Technology Trends. Amsterdam: IOS Press, 2020, 36: 593–604.
    [19]
    DU Peng, WEBER R, LUSZCZEK P, et al. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming[J]. Parallel Computing, 2012, 38(8): 391–407. doi: 10.1016/j.parco.2011.10.002
    [20]
    LOBATO GIMENES T, PISANI F, and BORIN E. Evaluating the performance and cost of accelerating seismic processing with CUDA, OpenCL, OpenACC, and OpenMP[C]. 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, Canada, 2018: 399–408.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (381) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return