Citation: | LUO Hongyan, ZHOU Luoyi, ZHAO Zhen, GUO Hong, FENG Xiaobo. Implementation of Digital Holographic Convolutional Reconstruction Algorithm Based on Open Computing Language Acceleration[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3258-3265. doi: 10.11999/JEIT210693 |
[1] |
刘俊, 梁霄, 王淦诚, 等. 微纳气泡的三维动态表征[J]. 净水技术, 2021, 40(2): 67–74,126. doi: 10.15890/j.cnki.jsjs.2021.02.007
LIU Jun, LIANG Xiao, WANG Gancheng, et al. Three-dimensional dynamic characterization of microbubbles[J]. Water Purification Technology, 2021, 40(2): 67–74,126. doi: 10.15890/j.cnki.jsjs.2021.02.007
|
[2] |
WU Peng, ZHANG Dejie, YUAN Jing, et al. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography[J]. Optics Express, 2022, 30(4): 5177–5191. doi: 10.1364/OE.451409
|
[3] |
税云秀, 胡琳, 戴姚辉, 等. 基于数字全息的回转类机械零件三维显示[J]. 激光与光电子学进展, 2020, 57(6): 060901.
SHUI Yunxiu, HU Lin, DAI Yaohui, et al. Three-dimensional display of rotary mechanical parts based on digital holography[J]. Laser &Optoelectronics Progress, 2020, 57(6): 060901.
|
[4] |
CHEN Duofang, WANG Lin, LUO Xixin, et al. Resolution and contrast enhancement for Lensless digital holographic microscopy and its application in biomedicine[J]. Photonics, 2022, 9(5): 358. doi: 10.3390/photonics9050358
|
[5] |
GAO Pan, WANG Jun, GAO Yangzi, et al. Observation on the droplet ranging from 2 to 16 μm in cloud droplet size distribution based on digital holography[J]. Remote Sensing, 2022, 14(10): 2414. doi: 10.3390/rs14102414
|
[6] |
CHANG Xuyang, BIAN liheng, GAO Yunhui, et al. Plug-and-play pixel super-resolution phase retrieval for digital holography[J]. Optics Letters, 2022, 47(11): 2658–2661. doi: 10.1364/OL.458117
|
[7] |
马静, 邸江磊, 肖锋. OpenMP并行程序在数字全息三维重构中的应用[J]. 计算机技术与发展, 2018, 28(3): 150–153,159. doi: 10.3969/j.issn.1673-629X.2018.03.032
MA Jing, DI Jianglei, and XIAO Feng. Application of OpenMP parallel program in 3D reconstruction of digital holography[J]. Computer Technology and Development, 2018, 28(3): 150–153,159. doi: 10.3969/j.issn.1673-629X.2018.03.032
|
[8] |
CHEN Huanyuan, HWANG W J, CHENG C J, et al. An FPGA-based autofocusing hardware architecture for digital holography[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 287–300. doi: 10.1109/TCI.2019.2892810
|
[9] |
刘海, 赵志雄, 税云秀, 等. CUDA架构下的数字全息粒子三维速度矢量场快速重建[J]. 激光杂志, 2017, 38(4): 57–60. doi: 10.14016/j.cnki.jgzz.2017.04.057
LIU Hai, ZHAO Zhixiong, SHUI Yunxiu, et al. High-speed digital holographic reconstruction of 3D particles velocity vector filed with CUDA[J]. Laser Journal, 2017, 38(4): 57–60. doi: 10.14016/j.cnki.jgzz.2017.04.057
|
[10] |
SHIN J G, KIM J W, LEE J H, et al. Accurate reconstruction of digital holography using frequency domain zero padding[J]. SPIE, 2017, 10323, 103235H.
|
[11] |
DOĞAR M, İLHAN H A, and ÖZCAN M. Real-time reconstruction of digital holograms with GPU[C]. SPIE 8644, Practical Holography XXVII: Materials & Applications, San Francisco, USA, 2013: 86440B.
|
[12] |
王广俊, 王大勇, 王华英. 数字全息显微中常见重建算法比较[J]. 激光与光电子学进展, 2010, 47(3): 030901.
WANG Guangjun, WANG Dayong, and WANG Huaying. Comparison of commonly used numerical reconstruction algorithms in digital holographic microscopy[J]. 2010, 47(3): 030901.
|
[13] |
何希, 吴炎桃, 邸臻炜, 等. 基于图形处理器的形态学重建系统[J]. 计算机应用, 2019, 39(7): 2008–2013. doi: 10.11772/j.issn.1001-9081.2018122549
HE Xi, WU Yantao, DI Zhenwei, et al. GPU-based morphological reconstruction system[J]. Journal of Computer Applications, 2019, 39(7): 2008–2013. doi: 10.11772/j.issn.1001-9081.2018122549
|
[14] |
于梦华, 王双亭, 李英成, 等. 畸变差改正算法OpenCL并行加速研究[J]. 遥感信息, 2019, 34(3): 88–92. doi: 10.3969/j.issn.1000-3177.2019.03.014
YU Menghua, WANG Shuangting, LI Yingcheng, et al. Distortion algorithm OpenCL parallel acceleration[J]. Remote Sensing Information, 2019, 34(3): 88–92. doi: 10.3969/j.issn.1000-3177.2019.03.014
|
[15] |
KARIMI K, DICKSON N G, and HAMZE F. A performance comparison of CUDA and OpenCL[J]. arXiv: 1005.2581, 2010.
|
[16] |
YU Leiming, NINA-PARAVECINO F, KAELI D R, et al. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms[J]. Journal of Biomedical Optics, 2018, 23(1): 010504. doi: 10.1117/1.JBO.23.1.010504
|
[17] |
FANG Jianbin, VARBANESCU A L, and SIPS H. A comprehensive performance comparison of CUDA and OpenCL[C]. 2011 International Conference on Parallel Processing, Taipei, China, 2011: 216–225.
|
[18] |
HOLM H H, BRODTKORB A R, and SAETRA M L. Performance and energy efficiency of CUDA and OpenCL for GPU computing using python[M]. FOSTER I, JOUBERT G R, KUCERA L, et al. Parallel Computing: Technology Trends. Amsterdam: IOS Press, 2020, 36: 593–604.
|
[19] |
DU Peng, WEBER R, LUSZCZEK P, et al. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming[J]. Parallel Computing, 2012, 38(8): 391–407. doi: 10.1016/j.parco.2011.10.002
|
[20] |
LOBATO GIMENES T, PISANI F, and BORIN E. Evaluating the performance and cost of accelerating seismic processing with CUDA, OpenCL, OpenACC, and OpenMP[C]. 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, Canada, 2018: 399–408.
|