Citation: | ZHANG Dexiang, WANG Jun, YUAN Peicheng. Object Detection Method for Multi-scale Full-scene Surveillance Based on Attention Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3249-3257. doi: 10.11999/JEIT210664 |
[1] |
陈勇, 刘曦, 刘焕淋. 基于特征通道和空间联合注意机制的遮挡行人检测方法[J]. 电子与信息学报, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
CHEN Yong, LIU Xi, and LIU Huanlin. Occluded pedestrian detection based on joint attention mechanism of channel-wise and spatial information[J]. Journal of Electronics &Information Technology, 2020, 42(6): 1486–1493. doi: 10.11999/JEIT190606
|
[2] |
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 886–893.
|
[3] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[4] |
董小伟, 韩悦, 张正, 等. 基于多尺度加权特征融合网络的地铁行人目标检测算法[J]. 电子与信息学报, 2021, 43(7): 2113–2120. doi: 10.11999/JEIT200450
DONG Xiaowei, HAN Yue, ZHANG Zheng, et al. Metro pedestrian detection algorithm based on multi-scale weighted feature fusion network[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2113–2120. doi: 10.11999/JEIT200450
|
[5] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE conference on computer vision and pattern recognition, Columbus, USA, 2014: 580–587.
|
[6] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
|
[7] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
|
[8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
[9] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 21–37.
|
[10] |
刘革, 郑叶龙, 赵美蓉. 基于RetinaNet改进的车辆信息检测[J]. 计算机应用, 2020, 40(3): 854–858. doi: 10.11772/j.issn.1001-9081.2019071262
LIU Ge, ZHENG Yelong, and ZHAO Meirong. Vehicle information detection based on improved RetinaNet[J]. Journal of Computer Applications, 2020, 40(3): 854–858. doi: 10.11772/j.issn.1001-9081.2019071262
|
[11] |
DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: Keypoint triplets for object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6568–6577.
|
[12] |
ZHOU Xingyi, ZHUO Jiacheng, and KRÄHENBUHL P. Bottom-up object detection by grouping extreme and center points[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 850–859.
|
[13] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: A new backbone that can enhance learning capability of CNN[C]. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, USA, 2020: 1571–1580.
|
[14] |
WANG Wenhai, XIE Enze, SONG Xiaoge, et al. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 8439–8448.
|
[15] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
[16] |
BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
|
[17] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv: 1804.02767, 2018.
|
[18] |
HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141.
|
[19] |
陈鸿坤, 罗会兰. 多尺度语义信息融合的目标检测[J]. 电子与信息学报, 2021, 43(7): 2087–2095. doi: 10.11999/JEIT200147
CHEN Hongkun and LUO Huilan. Multi-scale semantic information fusion for object detection[J]. Journal of Electronics &Information Technology, 2021, 43(7): 2087–2095. doi: 10.11999/JEIT200147
|
[20] |
ROBBINS H and MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400–407. doi: 10.1214/aoms/1177729586
|
[21] |
ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12993–13000.
|
[22] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026–1034.
|
[23] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
|
[24] |
CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13034–13043.
|
[25] |
WANG Shaoru, GONG Yongchao, XING Junliang, et al. RDSNet: A new deep architecture for reciprocal object detection and instance segmentation[C]. The 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 12208–12215.
|
[26] |
GHIASI G, LIN T Y, and LE Q V. NAS-FPN: Learning scalable feature pyramid architecture for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7029–7038.
|
[27] |
TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787.
|