| Citation: | ZHANG Hongying, HE Pengyi. Pedestrian Tracking Algorithm Based on Convolutional Block Attention Module and Anchor-free Detection Network[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3299-3307. doi: 10.11999/JEIT210634 | 
 
	                | [1] | 曹自强, 赛斌, 吕欣. 行人跟踪算法及应用综述[J]. 物理学报, 2020, 69(8): 084203. doi:  10.7498/aps.69.20191721 CAO Ziqiang, SAI Bin, and LU Xin. Review of pedestrian tracking: Algorithms and applications[J]. Acta Physica Sinica, 2020, 69(8): 084203. doi:  10.7498/aps.69.20191721 | 
| [2] | LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 734–750. | 
| [3] | ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[J]. arXiv preprint arXiv: 1904.07850, 2019. | 
| [4] | WANG Zhongdao, ZHENG Liang, LIU Yixuan, et al. Towards real-time multi-object tracking[J]. arXiv preprint arXiv: 1909.12605, 2020. | 
| [5] | ZHAN Yifu, WANG Chunyu, WANG Xinggang, et al. A simple baseline for multi-object tracking[J]. arXiv preprint arXiv: 2004.01888, 2020. | 
| [6] | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19. | 
| [7] | SUN Ke, ZHAO Yang, JIANG Borui, et al. High-resolution representations for labeling pixels and regions[J]. arXiv preprint arXiv: 1904.04514, 2019. | 
| [8] | LI Zeming, PENG Chao, YU Gang, et al. Light-head R-CNN: In defense of two-stage object detector[J]. arXiv preprint arXiv: 1711.07264, 2017. | 
| [9] | XIAO Tong, LI Shuang, WANG Bochao, et al. Joint detection and identification feature learning for person search[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3415–3424. | 
| [10] | ZHENG Liang, ZHANG Hengheng, SUN Shaoyan, et al. Person re-identification in the wild[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1367–1376. | 
| [11] | MILAN A, LEAL-TAIXE L, REID I, et al. MOT16: A benchmark for multi-object tracking[J]. arXiv preprint arXiv: 1603.00831, 2016. | 
| [12] | LEAL-TAIXÉ L, MILAN A, REID I, et al. MOTchallenge 2015: Towards a benchmark for multi-target tracking[J]. arXiv preprint arXiv: 1504.01942, 2015. | 
| [13] | WOJKE N, BEWLEY A, and PAULUS D. Simple online and realtime tracking with a deep association metric[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3645–3649. | 
| [14] | DENDORFER P, REZATOFIGHI H, MILAN A, et al. MOT20: A benchmark for multi object tracking in crowded scenes[J]. arXiv preprint arXiv: 2003.09003, 2020. | 
| [15] | PANG Bo, LI Yizhuo, ZHANG Yifan, et al. TubeTK: Adopting tubes to track multi-object in a one-step training model[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020. | 
| [16] | LIANG Chao, ZHANG Zhipeng, LU Yi, et al. Rethinking the competition between detection and ReID in Multi-Object Tracking[J]. arXiv preprint arXiv: 2010.12138, 2020. | 
| [17] | XU Yihong, BAN Yutong, DELORME G, et al. TransCenter: Transformers with dense queries for multiple-object tracking[J]. arXiv preprint arXiv: 2103.15145, 2021. | 
