Citation: | ZHANG Hongying, HE Pengyi. Pedestrian Tracking Algorithm Based on Convolutional Block Attention Module and Anchor-free Detection Network[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3299-3307. doi: 10.11999/JEIT210634 |
[1] |
曹自强, 赛斌, 吕欣. 行人跟踪算法及应用综述[J]. 物理学报, 2020, 69(8): 084203. doi: 10.7498/aps.69.20191721
CAO Ziqiang, SAI Bin, and LU Xin. Review of pedestrian tracking: Algorithms and applications[J]. Acta Physica Sinica, 2020, 69(8): 084203. doi: 10.7498/aps.69.20191721
|
[2] |
LAW H and DENG Jia. CornerNet: Detecting objects as paired keypoints[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 734–750.
|
[3] |
ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[J]. arXiv preprint arXiv: 1904.07850, 2019.
|
[4] |
WANG Zhongdao, ZHENG Liang, LIU Yixuan, et al. Towards real-time multi-object tracking[J]. arXiv preprint arXiv: 1909.12605, 2020.
|
[5] |
ZHAN Yifu, WANG Chunyu, WANG Xinggang, et al. A simple baseline for multi-object tracking[J]. arXiv preprint arXiv: 2004.01888, 2020.
|
[6] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The 15th European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3–19.
|
[7] |
SUN Ke, ZHAO Yang, JIANG Borui, et al. High-resolution representations for labeling pixels and regions[J]. arXiv preprint arXiv: 1904.04514, 2019.
|
[8] |
LI Zeming, PENG Chao, YU Gang, et al. Light-head R-CNN: In defense of two-stage object detector[J]. arXiv preprint arXiv: 1711.07264, 2017.
|
[9] |
XIAO Tong, LI Shuang, WANG Bochao, et al. Joint detection and identification feature learning for person search[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3415–3424.
|
[10] |
ZHENG Liang, ZHANG Hengheng, SUN Shaoyan, et al. Person re-identification in the wild[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1367–1376.
|
[11] |
MILAN A, LEAL-TAIXE L, REID I, et al. MOT16: A benchmark for multi-object tracking[J]. arXiv preprint arXiv: 1603.00831, 2016.
|
[12] |
LEAL-TAIXÉ L, MILAN A, REID I, et al. MOTchallenge 2015: Towards a benchmark for multi-target tracking[J]. arXiv preprint arXiv: 1504.01942, 2015.
|
[13] |
WOJKE N, BEWLEY A, and PAULUS D. Simple online and realtime tracking with a deep association metric[C]. 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017: 3645–3649.
|
[14] |
DENDORFER P, REZATOFIGHI H, MILAN A, et al. MOT20: A benchmark for multi object tracking in crowded scenes[J]. arXiv preprint arXiv: 2003.09003, 2020.
|
[15] |
PANG Bo, LI Yizhuo, ZHANG Yifan, et al. TubeTK: Adopting tubes to track multi-object in a one-step training model[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020.
|
[16] |
LIANG Chao, ZHANG Zhipeng, LU Yi, et al. Rethinking the competition between detection and ReID in Multi-Object Tracking[J]. arXiv preprint arXiv: 2010.12138, 2020.
|
[17] |
XU Yihong, BAN Yutong, DELORME G, et al. TransCenter: Transformers with dense queries for multiple-object tracking[J]. arXiv preprint arXiv: 2103.15145, 2021.
|