| Citation: | WANG Yang, XIU Yanlei, HU Tao, SHI Panpan, LIAO Xi. Research on Non-ideal Wireless Orbital Angular Momentum Multiplexing Communication System Based on Phase Compensation[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3212-3219. doi: 10.11999/JEIT210626 | 
 
	                | [1] | 孙学宏, 李强, 庞丹旭, 等. 轨道角动量在无线通信中的研究新进展综述[J]. 电子学报, 2015, 43(11): 2305–2314. doi:  10.3969/j.issn.0372-2112.2015.11.025 SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi:  10.3969/j.issn.0372-2112.2015.11.025 | 
| [2] | 廖希, 周晨虹, 王洋, 等. 面向无线通信的轨道角动量关键技术研究进展[J]. 电子与信息学报, 2020, 42(7): 1666–1677. doi:  10.11999/JEIT190372 LIAO Xi, ZHOU Chenhong, WANG Yang, et al. A survey of orbital angular momentum in wireless communication[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1666–1677. doi:  10.11999/JEIT190372 | 
| [3] | WANG Chengxiang, HUANG Jie, WANG Haiming, et al. 6G wireless channel measurements and models: Trends and challenges[J]. IEEE Vehicular Technology Magazine, 2020, 15(4): 22–32. doi:  10.1109/MVT.2020.3018436 | 
| [4] | 赵林军, 张海林, 刘乃安. 涡旋电磁波无线通信技术的研究进展[J]. 电子与信息学报, 2021, 43(11): 3075–3085. doi:  10.11999/JEIT200899 ZHAO Linjun, ZHANG Hailin, and LIU Naian. Research status of vortex electromagnetic wave wireless communication technologies[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3075–3085. doi:  10.11999/JEIT200899 | 
| [5] | EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi:  10.1109/TAP.2011.2173142 | 
| [6] | 王洋, 崔健, 廖希, 等. 基于信号检测的光无线轨道角动量复用系统研究[J]. 电子与信息学报, 2021, 43(11): 3156–3165. doi:  10.11999/JEIT200955 WANG Yang, CUI Jian, LIAO Xi, et al. Research on optical wireless orbital angular momentum multiplexing system based on signal detection[J]. Journal of Electronics &Information Technology, 2021, 43(11): 3156–3165. doi:  10.11999/JEIT200955 | 
| [7] | ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi:  10.1103/PhysRevA.45.8185 | 
| [8] | THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi:  10.1103/PhysRevLett.99.087701 | 
| [9] | TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14: 033001. doi:  10.1088/1367-2630/14/3/033001 | 
| [10] | OPARE K A and KUANG Yujun. Performance of an ideal wireless orbital angular momentum communication system using multiple-input multiple-output techniques[C]. 2014 International Conference on Telecommunications and Multimedia, Heraklion, Greece, 2014: 144–149. | 
| [11] | REN Yongxiong, LI Long, XIE Guodong, et al. Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 3151–3161. doi:  10.1109/TWC.2017.2675885 | 
| [12] | JIE Wenjun, WANG Yang, HU Tao, et al. Propagation model for UCA-based OAM communications in six-ray canyon channels[C]. The 2020 14th European Conference on Antennas and Propagation, Copenhagen, Denmark, 2020: 1–4. | 
| [13] | YAN Yan, LI Long, XIE Guodong, et al. Multipath effects in millimetre-wave wireless communication using orbital angular momentum multiplexing[J]. Scientific Reports, 2016, 6: 33482. doi:  10.1038/srep33482 | 
| [14] | LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi:  10.1109/TVT.2020.2966787 | 
| [15] | SHIN D, PARK E, KANG J, et al. Identification of non-ideal receiver condition for orbital angular momentum transmission[C]. The 2014 IEEE 79th Vehicular Technology Conference, Seoul, Korea, 2014: 1–5. | 
| [16] | CHEN Rui, XU Hui, MORETTI M, et al. Beam steering for the misalignment in UCA-based OAM communication systems[J]. IEEE Wireless Communications Letters, 2018, 7(4): 582–585. doi:  10.1109/LWC.2018.2797931 | 
| [17] | JING Haiyue, CHENG Wenchi, and XIA Xianggen. A simple channel independent beamforming scheme with parallel uniform circular array[J]. IEEE Communications Letters, 2019, 23(3): 414–417. doi:  10.1109/LCOMM.2019.2892114 | 
| [18] | ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi:  10.1109/ACCESS.2017.2766078 | 
| [19] | HU Tao, WANG Yang, LIAO Xi, et al. OAM-based beam selection for indoor millimeter wave MU-MIMO systems[J]. IEEE Communications Letters, 2021, 25(5): 1702–1706. doi:  10.1109/LCOMM.2021.3049457 | 
| [20] | HU Tao, WANG Yang, MA Bo, et al. Orbit angular momentum MIMO with mode selection for UAV-assisted A2G networks[J]. Sensors, 2020, 20(8): 2289. doi:  10.3390/s20082289 | 
| [21] | ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi:  10.1109/TWC.2016.2645199 | 
