Citation: | SHANG Fengjun, LI Saisai, WANG Ying, CUI Yunfan. Traffic Classification Method Based on Dynamic Balance Adaptive Transfer Learning[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3308-3319. doi: 10.11999/JEIT210623 |
[1] |
邹腾宽, 汪钰颖, 吴承荣. 网络背景流量的分类与识别研究综述[J]. 计算机应用, 2019, 39(3): 802–811. doi: 10.11772/j.issn.1001-9081.2018071552
ZOU Tengkuan, WANG Yuying, and WU Chengrong. Review of network background traffic classification and identification[J]. Journal of Computer Applications, 2019, 39(3): 802–811. doi: 10.11772/j.issn.1001-9081.2018071552
|
[2] |
SUN Guanglu, LIANG Lili, CHEN Teng, et al. Network traffic classification based on transfer learning[J]. Computers & Electrical Engineering, 2018, 69: 920–927. doi: 10.1016/j.compeleceng.2018.03.005
|
[3] |
李猛, 李艳玲, 林民. 命名实体识别的迁移学习研究综述[J]. 计算机科学与探索, 2020, 15(2): 206–218. doi: 10.3778/j.issn.1673-9418.2003049
LI Meng, LI Yanling, and LIN Min. Review of transfer learning for named entity recognition[J]. Journal of Frontiers of Computer Science and Technology, 2020, 15(2): 206–218. doi: 10.3778/j.issn.1673-9418.2003049
|
[4] |
WANG Jindong. Concise handbook of transfer learning[EB/OL].https://www.sohu.com/a/420774574_114877.
|
[5] |
李号号. 基于实例的迁移学习技术研究及应用[D]. [硕士论文], 武汉大学, 2018.
LI Haohao. Research and application of instance-based transfer learning[D]. [Master dissertation], Wuhan University, 2018.
|
[6] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281
|
[7] |
季鼎承, 蒋亦樟, 王士同. 基于域与样例平衡的多源迁移学习方法[J]. 电子学报, 2019, 47(3): 692–699.
JI Dingcheng, JIANG Yizhang, and WANG Shitong. Multi-source transfer learning method by balancing both the domains and instances[J]. Acta Electronica Sinica, 2019, 47(3): 692–699.
|
[8] |
YAO Yi and DORETTO G. Boosting for transfer learning with multiple sources[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1855–1862.
|
[9] |
唐诗淇, 文益民, 秦一休. 一种基于局部分类精度的多源在线迁移学习算法[J]. 软件学报, 2017, 28(11): 2940–2960. doi: 10.13328/j.cnki.jos.005352
TANG Shiqi, WEN Yimin, and QIN Yixiu. Online transfer learning from multiple sources based on local classification accuracy[J]. Journal of Software, 2017, 28(11): 2940–2960. doi: 10.13328/j.cnki.jos.005352
|
[10] |
张博, 史忠植, 赵晓非, 等. 一种基于跨领域典型相关性分析的迁移学习方法[J]. 计算机学报, 2015, 38(7): 1326–1336. doi: 10.11897/SP.J.1016.2015.01326
ZHANG Bo, SHI Zhongzhi, ZHAO Xiaofei, et al. A transfer learning based on canonical correlation analysis across different domains[J]. Chinese Journal of Computers, 2015, 38(7): 1326–1336. doi: 10.11897/SP.J.1016.2015.01326
|
[11] |
张宁. 基于决策树分类器的迁移学习研究[D]. [硕士论文], 西安电子科技大学, 2014.
ZHANG Ning. Research on transfer learning based on decision tree classifier[D]. [Master dissertation], Xidian University, 2014.
|
[12] |
洪佳明, 印鉴, 黄云, 等. TrSVM: 一种基于领域相似性的迁移学习算法[J]. 计算机研究与发展, 2011, 48(10): 1823–1830.
HONG Jiaming, YIN Jian, HUANG Yun, et al. TrSVM: A transfer learning algorithm using domain similarity[J]. Journal of Computer Research and Development, 2011, 48(10): 1823–1830.
|
[13] |
FADDOUL J B and CHIDLOVSKII B. Learning multiple tasks with boosted decision trees[P]. US, 8694444, 2014.
|
[14] |
WAN Zitong, YANG Rui, HUANG Mengjie, et al. A review on transfer learning in EEG signal analysis[J]. Neurocomputing, 2021, 421: 1–14. doi: 10.1016/j.neucom.2020.09.017
|
[15] |
TAN Ben, ZHANG Yu, PAN S, et al. Distant domain transfer learning[C]. The Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 2604–2610.
|
[16] |
CHIANG K J, WEI Chunshu, NAKANISHI M, et al. Boosting template-based SSVEP decoding by cross-domain transfer learning[J]. Journal of Neural Engineering, 2021, 18(1): 016002. doi: 10.1088/1741-2552/abcb6e
|
[17] |
NIU Shuteng, HU Yihao, WANG Jian, et al. Feature-based distant domain transfer learning[C]. 2020 IEEE International Conference on Big Data (Big Data), Atlanta, USA, 2020: 5164–5171.
|
[18] |
DUAN Lixin, XU Dong, and TSANG I W H. Domain adaptation from multiple sources: A domain-dependent regularization approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(3): 504–518. doi: 10.1109/TNNLS.2011.2178556
|
[19] |
WANG Jindong, CHEN Yiqiang, FENG Wenjie, et al. Transfer learning with dynamic distribution adaptation[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(1): 6. doi: 10.1145/3360309
|
[20] |
JIANG R, PACCHIANO A, STEPLETON T, et al. Wasserstein fair classification[C]. The Thirty-Fifth Conference on Uncertainty in Artificial Intelligence, Tel Aviv, Israel, 2019: 862–872.
|
[21] |
PRONZATO L. Performance analysis of greedy algorithms for minimising a maximum mean discrepancy[J]. arXiv preprint arXiv: 2101.07564, 2021.
|
[22] |
张东光. 统计学[M]. 2版. 北京: 科学出版社, 2020: 161–169.
ZHANG Dongguang. Statistics[M]. 2nd ed. Beijing: China Science Press, 2020: 161–169.
|
[23] |
MOORE A W and ZUEV D. Internet traffic classification using bayesian analysis techniques[J]. ACM SIGMETRICS Performance Evaluation Review, 2005, 33(1): 50–60. doi: 10.1145/1071690.1064220
|