Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
LIU Hailin, XIAO Junrong. Objective Reduction Algorithm Based on Decomposition and Hyperplane Approximation for Evolutionary Many-Objective Optimization[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3289-3298. doi: 10.11999/JEIT210605
Citation: LIU Hailin, XIAO Junrong. Objective Reduction Algorithm Based on Decomposition and Hyperplane Approximation for Evolutionary Many-Objective Optimization[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3289-3298. doi: 10.11999/JEIT210605

Objective Reduction Algorithm Based on Decomposition and Hyperplane Approximation for Evolutionary Many-Objective Optimization

doi: 10.11999/JEIT210605
Funds:  The National Natural Science Foundation of China (62172110), The Program of Science and Technology of Guangdong Province (2021A0505110004, 2020A0505100056)
  • Received Date: 2021-06-21
  • Accepted Date: 2022-03-10
  • Rev Recd Date: 2022-01-23
  • Available Online: 2022-03-19
  • Publish Date: 2022-09-19
  • Objective reduction is an important research direction in many-objective optimization. Through proper algorithm design, it can eliminate some redundant objectives to achieve the effect of greatly simplifying an optimization problem. Among the many-objective optimization problems with redundant objectives, the problems with nonlinear Pareto-Front are the most common and most difficult to tackle. In this paper, an algorithm based on Decomposition and Hyperplane Approximation (DHA) is proposed to deal with objective reduction problems with nonlinear Pareto-Front. The proposed algorithm decomposes a population with nonlinear geometric distribution into several subsets with approximate linear distribution in the process of evolution, and uses a hyperplane with sparse coefficients combined with some perturbation terms to fit these subsets, and then it extractes an essential objective set of original problem based on the coefficients of the fitting hyperplane. In order to test the performance of the proposed algorithm, this study compares it with some state-of-the-art algorithms in the benchmark DTLZ5(I, m), WFG3(I, m) and MAOP(I, m). The experimental results show that the proposed algorithm has good performance both in the problems with linear and nonlinear Pareto-Front.
  • loading
  • [1]
    SAXENA D K, DURO J A, TIWARI A, et al. Objective reduction in many-objective optimization: Linear and nonlinear algorithms[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(1): 77–99. doi: 10.1109/TEVC.2012.2185847
    [2]
    赵辉, 王天龙, 刘衍舟, 等. 基于分解和支配关系的超多目标进化算法[J]. 电子与信息学报, 2020, 42(8): 1975–1981. doi: 10.11999/JEIT190589

    ZHAO Hui, WANG Tianlong, LIU Yanzhou, et al. Decomposition and dominance relation based many-objective evolutionary algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(8): 1975–1981. doi: 10.11999/JEIT190589
    [3]
    刘建昌, 李飞, 王洪海, 等. 进化高维多目标优化算法研究综述[J]. 控制与决策, 2018, 33(5): 879–887. doi: 10.13195/j.kzyjc.2017.1442

    LIU Jianchang, LI Fei, WANG Honghai, et al. Survey on evolutionary many-objective optimization algorithms[J]. Control and Decision, 2018, 33(5): 879–887. doi: 10.13195/j.kzyjc.2017.1442
    [4]
    YUAN Jiawei, LIU Hailin, GU Fangqing, et al. Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 75–86. doi: 10.1109/TEVC.2020.2999100
    [5]
    CHEN Lu, WANG Handing, and MA Wenping. Two-stage multi-tasking transform framework for large-scale many-objective optimization problems[J]. Complex & Intelligent Systems, 2021, 7(3): 1499–1513. doi: 10.1007/s40747-021-00273-5
    [6]
    毕晓君, 王朝. 一种基于角度惩罚距离的高维多目标进化算法[J]. 电子与信息学报, 2018, 40(2): 314–322. doi: 10.11999/JEIT170454

    BI Xiaojun and WANG Chao. A many-objective evolutionary algorithm based on angle penalized distance[J]. Journal of Electronics &Information Technology, 2018, 40(2): 314–322. doi: 10.11999/JEIT170454
    [7]
    MA Lianbo, HUANG Min, YANG Shengxiang, et al. An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization[J]. IEEE Transactions on Cybernetics, 2022, 52(7): 6684–6696.
    [8]
    SINGH H K, ISAACS A, and RAY T. A pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(4): 539–556. doi: 10.1109/TEVC.2010.2093579
    [9]
    CHEUNG Y M, GU Fangqing, and LIU Hailin. Objective extraction for many-objective optimization problems: Algorithm and test problems[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 755–772. doi: 10.1109/TEVC.2016.2519758
    [10]
    BROCKHOFF D and ZITZLER E. Objective reduction in evolutionary multiobjective optimization: Theory and applications[J]. Evolutionary Computation, 2009, 17(2): 135–166. doi: 10.1162/evco.2009.17.2.135
    [11]
    YUAN Yuan, ONG Y S, GUPTA A, et al. Objective reduction in many-objective optimization: Evolutionary multiobjective approaches and comprehensive analysis[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(2): 189–210. doi: 10.1109/TEVC.2017.2672668
    [12]
    QIN Yingjie, ZHENG Jiehui, LI Zhigang, et al. Reduction of non-linear many objectives for coordinated operation of integrated energy systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105657. doi: 10.1016/j.ijepes.2019.105657
    [13]
    陈小红, 李霞, 王娜. 高维多目标优化中基于稀疏特征选择的目标降维方法[J]. 电子学报, 2015, 43(7): 1300–1307. doi: 10.3969/j.issn.0372-2112.2015.07.008

    CHEN Xiaohong, LI Xia, and WANG Na. Objective reduction with sparse feature selection for many objective optimization problem[J]. Acta Electronica Sinica, 2015, 43(7): 1300–1307. doi: 10.3969/j.issn.0372-2112.2015.07.008
    [14]
    SAXENA D K and DEB K. Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: Employing correntropy and a novel maximum variance unfolding[C]. The 4th International Conference on Evolutionary Multi-Criterion Optimization, Matsushima, Japan, 2007: 772–787.
    [15]
    LI Yifan, LIU Hailin, and GOODMAN E D. Hyperplane-approximation-based method for many-objective optimization problems with redundant objectives[J]. Evolutionary Computation, 2019, 27(2): 313–344. doi: 10.1162/evco_a_00223
    [16]
    LIU Hailin, CHEN Lei, ZHANG Qingfu, et al. An evolutionary many-objective optimisation algorithm with adaptive region decomposition[C]. 2016 IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2016: 4763–4769.
    [17]
    LIU Hailin, GU Fangqing, and ZHANG Qingfu. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 450–455. doi: 10.1109/TEVC.2013.2281533
    [18]
    BOSMAN P A N and THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 174–188. doi: 10.1109/TEVC.2003.810761
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (409) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return