Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
CHEN Quan, LIU Wenkang, SUN Guangcai, LI Dongxu, XING Mengdao. An Accelerated Back-Projection Algorithm Based on Large Swath for Geosynchronous-Earch-Orbit SAR Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3136-3143. doi: 10.11999/JEIT210560
Citation: CHEN Quan, LIU Wenkang, SUN Guangcai, LI Dongxu, XING Mengdao. An Accelerated Back-Projection Algorithm Based on Large Swath for Geosynchronous-Earch-Orbit SAR Imaging[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3136-3143. doi: 10.11999/JEIT210560

An Accelerated Back-Projection Algorithm Based on Large Swath for Geosynchronous-Earch-Orbit SAR Imaging

doi: 10.11999/JEIT210560
Funds:  The State Key Program of National Natural Science China (61931025), The State Key Program of National Natural Science China (2017-JCJQ-ZQ-061), The 111 Project (B18039)
  • Received Date: 2021-06-10
  • Rev Recd Date: 2022-07-13
  • Available Online: 2022-07-21
  • Publish Date: 2022-09-19
  • In the Geosynchronous-Earth-Orbit (GEO) SAR imaging, the extremely large swath width causes the imaging plane to no longer satisfy the flat plane approximation, which makes the accelerated BP algorithms based on the flat plane grid invalid. In this paper, an accelerated BP algorithm based on ground grid is proposed to process accurately and efficiently the GEO SAR signals. The imaging grids are arranged on the ground surface to correct the complex space variance of the signal caused by orbit and ground surface curvature. To solve the spectrum aliasing of sub-aperture images, a two-step spectrum compressing method is proposed to achieve the sub-aperture spectrum de-aliasing before fusion. And a multi-stage sub-aperture image fusion method is adopted to improve the imaging efficiency. Finally, simulation results are shown to verify the accuracy and efficiency of the proposed focusing approaches.
  • loading
  • [1]
    MADSEN S N, CHEN C, and EDELSTEIN W. Radar options for global earthquake monitoring[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 1483–1485.
    [2]
    TOMIYASU K. Conceptual performance of a satellite borne, wide swath synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, GE-19(2): 108–116. doi: 10.1109/TGRS.1981.350361
    [3]
    TOMIYASU K. Synthetic aperture radar in geosynchronous orbit[C]. 1978 Antennas and Propagation Society International Symposium, Washington, USA, 1978: 42–45.
    [4]
    BRUNO D, HOBBS S E, and OTTAVIANELLI G. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications[J]. Acta Astronautica, 2006, 59(1-5): 149–156. doi: 10.1016/j.actaastro.2006.02.005
    [5]
    刘文康, 景国彬, 孙光才, 等. 基于两步方位重采样的中轨SAR聚焦方法[J]. 电子与信息学报, 2019, 41(1): 136–142.

    LIU Wenkang, JING Guobin, SUN Guangcai, et al. Medium-earth-orbit SAR data focusing method based on two-step azimuth resampling[J]. Journal of Electronics &Information Technology, 2019, 41(1): 136–142.
    [6]
    CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in range-Doppler domain for geosynchronous synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635. doi: 10.1109/LGRS.2016.2599224
    [7]
    陈权, 孙光才, 刘文康, 等. 基于时频联合尺度变换的中轨SAR斜视成像方法[J]. 系统工程与电子技术, 2020, 42(2): 309–314. doi: 10.3969/j.issn.1001-506X.2020.02.08

    CHEN Quan, SUN Guangcai, LIU Wenkang, et al. Highly-squinted MEO SAR focusing based on joint time and Doppler scaling[J]. Systems Engineering and Electronic, 2020, 42(2): 309–314. doi: 10.3969/j.issn.1001-506X.2020.02.08
    [8]
    GUARNIERI A M, LEANZA A, RECCHIA A, et al. Atmospheric phase screen in GEO-SAR: Estimation and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1668–1679. doi: 10.1109/TGRS.2017.2766084
    [9]
    LIU Wenkang, SUN Guangcai, XING Mengdao, et al. Focusing of MEO SAR data based on principle of optimal imaging coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5477–5489. doi: 10.1109/TGRS.2020.2966581
    [10]
    陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205–220. doi: 10.12000/JR20015

    CHEN Jie, YANG Wei, WANG Pengbo, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205–220. doi: 10.12000/JR20015
    [11]
    李航, 刘文康, 孙光才, 等. 基于成像坐标系优化的中轨星载SAR成像方法[J]. 雷达学报, 2020, 9(5): 856–864. doi: 10.12000/JR20098

    LI Hang, LIU Wenkang, SUN Guangcai, et al. Medium orbit spaceborne SAR imaging method based on Optimization of imaging coordinate system[J]. Journal of Radars, 2020, 9(5): 856–864. doi: 10.12000/JR20098
    [12]
    SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [13]
    LI Zhuo, LI Chunsheng, YU Ze, et al. Back projection algorithm for high resolution GEO-SAR image formation[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 336–339.
    [14]
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
    [15]
    BIE Bowen, XING Mengdao, SUN Guangcai, et al. A frequency domain backprojection algorithm based on local Cartesian coordinate and subregion range migration correction for high-squint SAR mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/TGRS.2018.2848249
    [16]
    CHEN Juan, XIONG Jintao, HUANG Yulin, et al. Research on a novel fast backprojection algorithm for stripmap bistatic SAR imaging[C]. The 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 622–625.
    [17]
    DONG Qi, SUN Guangcai, YANG Zemin, et al. Cartesian factorized backprojection algorithm for high-resolution spotlight SAR imaging[J]. IEEE Sensors Journal, 2018, 18(3): 1160–1168. doi: 10.1109/JSEN.2017.2780164
    [18]
    CHEN Xiaoxiang, SUN Guangcai, XING Mengdao, et al. Ground Cartesian back-projection algorithm for high squint diving TOPS SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5812–5827. doi: 10.1109/TGRS.2020.3011589
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (667) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return