Citation: | WU Yiteng, LIU Wei, YU Hongtao, CAO Xiaochun. Adversarial Attacks on Graph Neural Network Based on Local Influence Analysis Model[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2576-2583. doi: 10.11999/JEIT210448 |
[1] |
白铂, 刘玉婷, 马驰骋, 等. 图神经网络[J]. 中国科学:数学, 2020, 50(3): 367–384. doi: 10.1360/N012019-00133
BAI Bo, LIU Yuting, MA Chicheng, et al. Graph neural network[J]. Scientia Sinica:Mathematica, 2020, 50(3): 367–384. doi: 10.1360/N012019-00133
|
[2] |
康世泽, 吉立新, 张建朋. 一种基于图注意力网络的异质信息网络表示学习框架[J]. 电子与信息学报, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034
KANG Shize, JI Lixin, and ZHANG Jianpeng. Heterogeneous information network representation learning framework based on graph attention network[J]. Journal of Electronics &Information Technology, 2021, 43(4): 915–922. doi: 10.11999/JEIT200034
|
[3] |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755–780. doi: 10.11897/SP.J.1016.2020.00755
XU Bingbing, CEN Keting, HUANG Junjie, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755–780. doi: 10.11897/SP.J.1016.2020.00755
|
[4] |
XU Han, MA Yao, LIU Haochen, et al. Adversarial attacks and defenses in images, graphs and text: A review[J]. International Journal of Automation and Computing, 2020, 17(2): 151–178. doi: 10.1007/s11633-019-1211-x
|
[5] |
ZÜGNER D, AKBARNEJAD A, and GÜNNEMANN S. Adversarial attacks on neural networks for graph data[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 2847–2856.
|
[6] |
MA Jiaqi, DING Shuangrui, and MEI Qiaozhu. Towards more practical adversarial attacks on graph neural networks[C]. The 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada, 2020.
|
[7] |
LI Jia, ZHANG Honglei, HAN Zhichao, et al. Adversarial attack on community detection by hiding individuals[C]. The Web Conference 2020, Taipei, China, 2020: 917–927.
|
[8] |
BOJCHEVSKI A and GÜNNEMANN S. Adversarial attacks on node embeddings via graph poisoning[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 695–704.
|
[9] |
COOK R D. Detection of influential observation in linear regression[J]. Technometrics, 1977, 19(1): 15–18. doi: 10.1080/00401706.1977.10489493
|
[10] |
COOK R D. Influential observations in linear regression[J]. Journal of the American Statistical Association, 1979, 74(365): 169–174. doi: 10.1080/01621459.1979.10481634
|
[11] |
韦博成, 鲁国斌, 史建清. 统计诊断引论[M]. 南京: 东南大学出版社, 1991: 442–488.
WEI Bocheng, LU Guobin, and SHI Jianqing. Introduction to Statistical Diagnosis[M]. Nanjing: Southeast University Press, 1991: 442–488.
|
[12] |
韦博成, 林金官, 解锋昌. 统计诊断[M]. 北京: 高等教育出版社, 2009: 101–118.
WEI Bocheng, LIN Jinguan, and XIE Fengchang. Statistical Diagnosis[M]. Beijing: Higher Education Press, 2009: 101–118.
|
[13] |
YUAN Xiaoyong, HE Pan, ZHU Qile, et al. Adversarial examples: Attacks and defenses for deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2805–2824. doi: 10.1109/TNNLS.2018.2886017
|
[14] |
闫佳, 闫佳, 聂楚江, 等. 基于遗传算法的恶意代码对抗样本生成方法[J]. 电子与信息学报, 2020, 42(9): 2126–2133. doi: 10.11999/JEIT191059
YAN Jia, YAN Jia, NIE Chujiang, et al. Method for generating malicious code adversarial samples based on genetic algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2126–2133. doi: 10.11999/JEIT191059
|
[15] |
ZÜGNER D and GÜNNEMANN S. Adversarial attacks on graph neural networks via meta learning[C]. The 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[16] |
WU Yiteng, LIU Wei, HU Xinbang, et al. Parameter discrepancy hypothesis: Adversarial attack for graph data[J]. Information Sciences, 2021, 577: 234–244. doi: 10.1016/j.ins.2021.06.086
|
[17] |
COOK R D and WEISBERG S. Residuals and Influence in Regression[M]. New York: Chapman and Hall, 1982: 1–20.
|
[18] |
XU Kaidi, CHEN Hongge, LIU Sijia, et al. Topology attack and defense for graph neural networks: An optimization perspective[C]. The Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 3961–3967.
|
[19] |
LI Qimai, WU Xiaoming, LIU Han, et al. Label efficient semi-supervised learning via graph filtering[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 9582–9591.
|
[20] |
NT H and MAEHARA T. Revisiting graph neural networks: All we have is low-pass filters[J]. arXiv: 1905.09550, 2019.
|
[21] |
WU F, ZHANG Tianyi, DE SOUZA JR A H, et al. Simplifying graph convolutional networks[J]. arXiv: 1902.07153, 2019.
|
[22] |
费宇, 陈飞, 喻达磊, 等. 线性和广义线性混合模型及其统计诊断[M]. 北京: 科学出版社, 2013: 51–82.
FEI Yu, CHEN Fei, YU Dalei, et al. Linear and Generalized Linear Mixed Models and Their Statistical Diagnosis[M]. Beijing: Science Press, 2013: 51–82.
|
[23] |
SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93–106. doi: 10.1609/aimag.v29i3.2157
|
[24] |
MCCALLUM A K, NIGAM K, RENNIE J, et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3(2): 127–163. doi: 10.1023/A:1009953814988
|
[25] |
ADAMIC L A and GLANCE N. The political blogosphere and the 2004 U. S. election: Divided they blog[C]. The 3rd International Workshop on Link Discovery, Chicago, USA, 2005: 36–43.
|
[26] |
KIPF T N and WELLING M. Semi-supervised classification with graph convolutional networks[C]. The 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[27] |
PEROZZI B, AL-RFOU R, and SKIENA S. Deepwalk: Online learning of social representations[C]. The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014: 701–710.
|