Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
GUAN Jian, WU Xijie, DING Hao, LIU Ningbo, DONG Yunlong, ZHANG Pengfei. A Method for Detecting Small Slow Targets in Sea Surface Based on Diagonal Integrated Bispectrum[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2449-2460. doi: 10.11999/JEIT210408
Citation: GUAN Jian, WU Xijie, DING Hao, LIU Ningbo, DONG Yunlong, ZHANG Pengfei. A Method for Detecting Small Slow Targets in Sea Surface Based on Diagonal Integrated Bispectrum[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2449-2460. doi: 10.11999/JEIT210408

A Method for Detecting Small Slow Targets in Sea Surface Based on Diagonal Integrated Bispectrum

doi: 10.11999/JEIT210408
Funds:  The National Natural Science Foundation of China (62101583, 61871392, 61871391)
  • Received Date: 2021-05-12
  • Rev Recd Date: 2021-09-28
  • Available Online: 2021-10-01
  • Publish Date: 2022-07-25
  • Considering the technical difficulty of radar to detect small targets embedded in the sea clutter, a three-feature fusion detection method based on diagonal integrated bispectrum is proposed. Firstly, the diagonal integrated bispectrum is obtained from the estimated bispectrum of the signal to be detected. Then, according to the nonlinear coupling difference between sea clutter cell and target cell, three features consist of peak value, centroid frequency and spectrum width are extracted from the diagonal integrated bispectrum. Considering that the number of coherent pulses used by radar in scanning mode is usually small, it is easy to lead to feature instability, and then affect the separability of sea clutter and target. For this reason, through the comprehensive application of multi-frame scanning historical data and current frame data, three cumulative features including cumulative peak value, total variation, cumulative spectrum width are obtained by accumulating three spectrum features. Finally, the convex hull classification algorithm is used to perform fusion detection in three dimensional feature space. The measured CSIR dataset verifies that, under same parameters, the proposed detection method has better detection performance compared with the existing detection methods based on three time-frequency features, amplitude feature and doppler features, fractal feature.
  • loading
  • [1]
    关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114
    [2]
    王雪松, 杨勇. 海杂波与目标极化特性研究进展[J]. 电波科学学报, 2019, 34(6): 665–675. doi: 10.13443/j.cjors.2019103101

    WANG Xuesong and YANG Yong. Overview on cognition of clutter and target polarization characteristics for maritime radar[J]. Chinese Journal of Radio Science, 2019, 34(6): 665–675. doi: 10.13443/j.cjors.2019103101
    [3]
    何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    HE You, HUANG Yong, GUAN Jian, et al. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [4]
    张坤, 水鹏朗, 王光辉. 相参雷达K分布海杂波背景下非相干积累恒虚警检测方法[J]. 电子与信息学报, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441

    ZHANG Kun, SHUI Penglang, and WANG Guanghui. Non-coherent integration constant false alarm rate detectors against K-distributed sea clutter for coherent radar systems[J]. Journal of Electronics &Information Technology, 2020, 42(7): 1627–1635. doi: 10.11999/JEIT190441
    [5]
    许述文, 薛健, 水鹏朗. 基于知识的海杂波背景下距离扩展目标检测[J]. 电子与信息学报, 2016, 38(12): 3004–3010. doi: 10.11999/JEIT160905

    XU Shuwen, XUE Jian, and SHUI Penglang. Adaptive detection of range-spread targets based on knowledge in sea clutter background[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3004–3010. doi: 10.11999/JEIT160905
    [6]
    徐涛, 吴军, 夏海宝, 等. 基于频域CFAR方法的PD雷达回波信号处理[J]. 现代防御技术, 2012, 40(1): 140–143. doi: 10.3969/j.issn.1009-086x.2012.01.030

    XU Tao, WU Jun, XIA Haibao, et al. PD radar echo processing based on the method of CFAR in frequency domain[J]. Modern Defence Technology, 2012, 40(1): 140–143. doi: 10.3969/j.issn.1009-086x.2012.01.030
    [7]
    许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
    [8]
    HU Jing, TUNG W W, and GAO Jianbo. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136–143. doi: 10.1109/TAP.2005.861541
    [9]
    LUO Feng, ZHANG Danting, and ZHANG Bo. The fractal properties of sea clutter and their applications in maritime target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1295–1299. doi: 10.1109/LGRS.2013.2237750
    [10]
    FAN Yifei, TAO Mingliang, SU Jia, et al. Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1824–1828. doi: 10.1109/LGRS.2019.2912329
    [11]
    SHUI Penglang, LI Dongchen, and XU Shuwen. Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1416–1430. doi: 10.1109/TAES.2014.120657
    [12]
    SHI Sainan and SHUI Penglang. Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6395–6411. doi: 10.1109/TGRS.2018.2838260
    [13]
    郭子薰, 水鹏朗, 白晓惠, 等. 海杂波中基于可控虚警K近邻的海面小目标检测[J]. 雷达学报, 2020, 9(4): 654–663. doi: 10.12000/JR20055

    GUO Zixun, SHUI Penglang, BAI Xiaohui, et al. Sea-surface small target detection based on K-NN with controlled false alarm rate in sea clutter[J]. Journal of Radars, 2020, 9(4): 654–663. doi: 10.12000/JR20055
    [14]
    GUO Zixun and SHUI Penglang. Anomaly based sea-surface small target detection using K-nearest neighbor classification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4947–4964. doi: 10.1109/TAES.2020.3011868
    [15]
    SHUI Penglang, GUO Zixun, and SHI Sainan. Feature-compression-based detection of sea-surface small targets[J] IEEE Access, 2019, 8: 8371–8385. doi: 10.1109/ACCESS.2019.2962793.
    [16]
    SHUI Penglang, GUO Zixun. Sea-surface floating small target detection based on feature compression[J]. The Journal of Engineering, 2019, 2019(21): 8160–8164. doi: 10.1049/joe.2019.0694
    [17]
    陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040

    CHEN Xiaolong, GUAN Jian, YU Xiaohan, et al. Radar Micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1017–1023. doi: 10.11999/JEIT161040
    [18]
    李东宸, 水鹏朗, 许述文. 块白化杂波抑制的海面漂浮小目标检测方法[J]. 西安电子科技大学学报:自然科学版, 2016, 43(6): 21–26. doi: 10.3969/j.issn.1001-2400.2016.06.004

    LI Dongchen, SHUI Penglang, and XU Shuwen. Floating small target detection in the sea clutter via block-whitened clutter suppression[J]. Journal of Xidian University, 2016, 43(6): 21–26. doi: 10.3969/j.issn.1001-2400.2016.06.004
    [19]
    XU Shuwen, ZHENG Jibin, PU Jia, et al. Sea-surface floating small target detection based on polarization features[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(10): 1505–1509. doi: 10.1109/LGRS.2018.2852560
    [20]
    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [21]
    陈世超, 罗丰, 胡冲, 等. 基于多普勒谱非广延熵的海面目标检测方法[J]. 雷达学报, 2019, 8(3): 344–354. doi: 10.12000/JR19012

    CHEN Shichao, LUO Feng, HU Chong, et al. Small target detection in sea clutter background based on tsallis entropy of Doppler spectrum[J]. Journal of Radars, 2019, 8(3): 344–354. doi: 10.12000/JR19012
    [22]
    李军伟. 双谱分析新方法及其工程应用研究[D]. [硕士论文], 郑州大学, 2006.

    LI Junwei. A new method of bispectral analysis and its engineering application[D]. [Master dissertation], Zhengzhou University, 2006.
    [23]
    TANG Li and JIANG Ting. Target identification based on diagonal slice of the complex bispectrum[C]. Proceedings of 2014 IEEE International Conference on Communiction Problem-solving, Beijing, China, 2014: 303–306. doi: 10.1109/ICCPS.2014.7062279.
    [24]
    ZHANG Xianda, SHI Yu, and BAO Zheng. A new feature vector using selected bispectra for signal classification with application in radar target recognition[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 1875–1885. doi: 10.1109/78.942617
    [25]
    HERSELMAN P L, BAKER C J, and DE WIND H J. An analysis of X-band calibrated sea clutter and small boat reflectivity at medium-to-low grazing angles[J]. International Journal of Navigation and Observation, 2008, 2008: 347518. doi: 10.1155/2008/347518
    [26]
    HERSELMAN P L and BAKER C J. Analysis of calibrated sea clutter and boat reflectivity data at C- and X-band in south African coastal waters[C]. Proceedings of 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007. doi: 10.1049/cp:20070616.
    [27]
    丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (1797) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return