Citation: | LI Baoqi, HUANG Haining, LIU Jiyuan, LIU Zhengjun, WEI Linzhe. Turbid Water Image Enhancement Algorithm Based on Improved CycleGAN[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2504-2511. doi: 10.11999/JEIT210400 |
[1] |
HMUE P M and PUMRIN S. Image enhancement and quality assessment methods in turbid water: A review article[C]. 2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia), Bangkok, Thailand, 2019: 59–63.
|
[2] |
HITAM M S, AWALLUDIN E A, YUSSOF W N J H W, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]. 2013 International Conference on Computer Applications Technology (ICCAT), Sousse, Tunisia, 2013: 1–5.
|
[3] |
GHANI A S A and ISA N A M. Enhancement of low quality underwater image through integrated global and local contrast correction[J]. Applied Soft Computing, 2015, 37: 332–344. doi: 10.1016/j.asoc.2015.08.033
|
[4] |
LI Chongyi, GUO Jichang, GUO Chunle, et al. A hybrid method for underwater image correction[J]. Pattern Recognition Letters, 2017, 94: 62–67. doi: 10.1016/j.patrec.2017.05.023
|
[5] |
DENG Xiangyu, WANG Huigang, and LIU Xing. Underwater image enhancement based on removing light source color and Dehazing[J]. IEEE Access, 2019, 7: 114297–114309. doi: 10.1109/ACCESS.2019.2936029
|
[6] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
|
[7] |
KWOK R. Deep learning powers a motion-tracking revolution[J]. Nature, 2019, 574(7776): 137–138. doi: 10.1038/d41586-019-02942-5
|
[8] |
WANG Shiqiang. Efficient deep learning[J]. Nature Computational Science, 2021, 1(3): 181–182. doi: 10.1038/s43588-021-00042-x
|
[9] |
KUANG Wenhuan, YUAN Congcong, and ZHANG Jie. Real-time determination of earthquake focal mechanism via deep learning[J]. Nature Communications, 2021, 12(1): 1432. doi: 10.1038/s41467-021-21670-x
|
[10] |
YANG X S. Data Mining and Deep Learning[M]. YANG X S. Nature-Inspired Optimization Algorithms (Second Edition). London : Academic Press, 2021: 239–258.
|
[11] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
|
[12] |
RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]. 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
|
[13] |
ARJOVSKY M, CHINTALA S, and BOTTOU L. Wasserstein GAN[J]. arXiv Preprint arXiv: 1701.07875, 2017.
|
[14] |
CHEN Xi, DUAN Yan, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[C]. Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 2016: 2172−2180.
|
[15] |
XU Qiantong, HUANG Gao, YUAN Yang, et al. An empirical study on evaluation metrics of generative adversarial networks[J]. arXiv preprint arXiv: 1806.07755, 2018.
|
[16] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image−to−image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5967–5976.
|
[17] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2242–2251.
|
[18] |
FABBRI C, ISLAM M J, and SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]. 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018: 7159–7165.
|
[19] |
XIE Saining, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 5987–5995.
|
[20] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, USA, 2017: 4278–4284.
|
[21] |
LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519.
|
[22] |
HUANG Xuejun, WEN Liwu, and DING Jinshan. SAR and optical image registration method based on improved CycleGAN[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–6.
|
[23] |
李宝奇, 贺昱曜, 强伟, 等. 基于并行附加特征提取网络的SSD地面小目标检测模型[J]. 电子学报, 2020, 48(1): 84–91. doi: 10.3969/j.issn.0372-2112.2020.01.010
LI Baoqi, HE Yuyao, QIANG Wei, et al. SSD with parallel additional feature extraction network for ground small target detection[J]. Acta Electronica Sinica, 2020, 48(1): 84–91. doi: 10.3969/j.issn.0372-2112.2020.01.010
|
[24] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv Preprint arXiv: 1704.04861, 2017.
|
[25] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
|
[26] |
QIN Yanjun, LUO Haiyong, ZHAO Fang, et al. NDGCN: Network in network, dilate convolution and graph convolutional networks based transportation mode recognition[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2138–2152. doi: 10.1109/TVT.2021.3060761
|