| Citation: | CHEN Tao, ZHAO Lipeng, SHI Lin, SHEN Mengyu. Signal Parameter Estimation Algorithm for Orthogonal Dipole Array Based on Finite Rate of Innovation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2469-2477. doi: 10.11999/JEIT210357 | 
 
	                | [1] | WAN Liangtian, LIU Kaihui, LIANG Yingchang, et al. DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(5): 3152–3167. doi:  10.1109/TWC.2020.3047866 | 
| [2] | 王琦森, 余华, 李杰, 等. 基于稀疏贝叶斯学习的空间紧邻信号DOA估计算法[J]. 电子与信息学报, 2021, 43(3): 708–716. doi:  10.11999/JEIT200656 WANG Qisen, YU Hua, LI Jie, et al. Sparse Bayesian learning based algorithm for DOA estimation of closely spaced signals[J]. Journal of Electronics &Information Technology, 2021, 43(3): 708–716. doi:  10.11999/JEIT200656 | 
| [3] | 李槟槟, 张袁鹏, 陈辉, 等. 分离式长电偶极子稀疏阵列的相干信号多维参数联合估计[J]. 电子与信息学报, 2021, 43(9): 2695–2702. doi:  10.11999/JEIT200515 LI Binbin, ZHANG Yuanpeng, CHEN Hui, et al. Coherent sources multidimensional parameters estimation with a sparse array of spatially spread long electric-dipoles[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2695–2702. doi:  10.11999/JEIT200515 | 
| [4] | SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi:  10.1109/TAP.1986.1143830 | 
| [5] | ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi:  10.1109/29.32276 | 
| [6] | FERRARA E and PARKS T. Direction finding with an array of antennas having diverse polarizations[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(2): 231–236. doi:  10.1109/TAP.1983.1143038 | 
| [7] | LI J. Direction and polarization estimation using arrays with small loops and short dipoles[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 379–387. doi:  10.1109/8.233120 | 
| [8] | 徐友根, 刘志文. 残缺电磁矢量阵列直线信号波达方向估计[J]. 电子与信息学报, 2009, 31(4): 861–864. doi:  10.3724/SP.J.1146.2007.01471 XU Yougen and LIU Zhiwen. DOA estimation of rectilinear signals using defective electromagnetic vector arrays[J]. Journal of Electronics &Information Technology, 2009, 31(4): 861–864. doi:  10.3724/SP.J.1146.2007.01471 | 
| [9] | 徐丽琴, 李勇, 付银娟, 等. 基于降维实值ESPRIT的多输入多输出雷达波达方向估计[J]. 吉林大学学报:工学版, 2020, 50(3): 1113–1119. doi:  10.13229/j.cnki.jdxbgxb20190014 XU Liqin, LI Yong, FU Yinjuan, et al. Reduced-dimensional real-valued ESPRIT algorithm for direction of arrival estimation in MIMO radar[J]. Journal of Jilin University:Engineering and Technology Edition, 2020, 50(3): 1113–1119. doi:  10.13229/j.cnki.jdxbgxb20190014 | 
| [10] | 刘鲁涛, 王传宇. 基于极化敏感阵列均匀线阵的二维DOA估计[J]. 电子与信息学报, 2019, 41(10): 2350–2357. doi:  10.11999/JEIT180832 LIU Lutao and WANG Chuanyu. Two dimensional DOA estimation based on polarization sensitive array and uniform linear array[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2350–2357. doi:  10.11999/JEIT180832 | 
| [11] | BAIDOO E, HU Jurong, ZENG Bao, et al. Joint DOD and DOA estimation using tensor reconstruction based sparse representation approach for bistatic MIMO radar with unknown noise effect[J]. Signal Processing, 2021, 182: 107912. doi:  10.1016/j.sigpro.2020.107912 | 
| [12] | CHALISE B K, ZHANG Y D, and HIMED B. Compressed sensing based joint DOA and polarization angle estimation for sparse arrays with dual-polarized antennas[C]. 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, USA, 2018: 251–255. | 
| [13] | CHEN Tao, YANG Jian, WANG Weitong, et al. Generalized sparse polarization array for DOA estimation using compressive measurements[J]. Wireless Communications and Mobile Computing, 2021, 2021: 5539709. doi:  10.1155/2021/5539709 | 
| [14] | VETTERLI M, MARZILIANO P, and BLU T. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1417–1428. doi:  10.1109/tsp.2002.1003065 | 
| [15] | BLU T, DRAGOTTI P L, VETTERLI M, et al. Sparse sampling of signal innovations[J]. IEEE Signal Processing Magazine, 2008, 25(2): 31–40. doi:  10.1109/MSP.2007.914998 | 
| [16] | PAN Haijie, BLU T, and VETTERLI M. Towards generalized FRI sampling with an application to source resolution in radioastronomy[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 821–835. doi:  10.1109/TSP.2016.2625274 | 
| [17] | PAN Hanjie, SCHEIBLER R, BEZZAM E, et al. FRIDA: FRI-based DOA estimation for arbitrary array layouts[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, USA, 2017: 3186–3190. | 
| [18] | PAN Yujian, LUO Guoqing, JIN Huayan, et al. DOA estimation with planar array via spatial finite rate of innovation reconstruction[J]. Signal Processing, 2018, 153: 47–57. doi:  10.1016/j.sigpro.2018.07.001 | 
| [19] | CHEN Tao, SHI Lin, and YU Yongzhi. Gridless DOA estimation with finite rate of innovation reconstruction based on symmetric Toeplitz covariance matrix[J]. EURASIP Journal on Advances in Signal Processing, 2020, 2020(1): 44. doi:  10.1186/s13634-020-00701-7 | 
| [20] | YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi:  10.1109/TSP.2014.2339792 | 
| [21] | BRESLER Y and MACOVSKI A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1081–1089. doi:  10.1109/TASSP.1986.1164949 | 
| [22] | GILLIAM C and BLU T. Finding the minimum rate of innovation in the presence of noise[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 4019–4023. | 
