Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
YU Huifang, WANG Ning. Certificateless Proxy Signcryption Scheme from Lattice[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2584-2591. doi: 10.11999/JEIT210300
Citation: YU Huifang, WANG Ning. Certificateless Proxy Signcryption Scheme from Lattice[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2584-2591. doi: 10.11999/JEIT210300

Certificateless Proxy Signcryption Scheme from Lattice

doi: 10.11999/JEIT210300
Funds:  The Key Project of Basic Research Program of Natural Science Foundation of Shannxi Province (2020JZ-54)
  • Received Date: 2021-04-13
  • Accepted Date: 2022-04-14
  • Rev Recd Date: 2022-03-27
  • Available Online: 2022-04-22
  • Publish Date: 2022-07-25
  • Certificateless proxy signcryption plays an increasingly significant role in information security fields. Most of certificateless proxy signcryption schemes are based on traditional mathematic theory and can not resist the quantum computing attacks. In this paper, a new CertificateLess Proxy SignCryption from Lattice (L-CLPSC) is proposed by using lattice-based cryptography technology. L-CLPSC is indistinguishable against adaptive chosen-ciphertext attacks and unforgeable against adaptive chosen-message attacks under Learning With Errors (LWE) and Small Integer Solution (SIS) assumptions. Comparison shows L-CLPSC has higher computation efficiency and lower communication overhead.
  • loading
  • [1]
    SHAMIR A. Identity-based cryptosystems and signature schemes[C]. CRYPTO 84 on Advances in Cryptology, Santa Barbara, USA, 1984: 47–53.
    [2]
    AL-RIYAMI S S and PATERSON K G. Certificateless public key cryptography[C]. The 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, China, 2003: 452–473.
    [3]
    YU Huifang and WANG Zhicang. Construction of certificateless proxy signcryption scheme from CMGs[J]. IEEE Access, 2019, 7: 141910–141919. doi: 10.1109/ACCESS.2019.2943718
    [4]
    SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]. The 35th Annual Symposium on Foundations of Computer Science, Santa Fe, USA, 1994: 124–134.
    [5]
    GENTRY C. Fully homomorphic encryption using ideal lattices[C]. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–178.
    [6]
    夏峰, 杨波, 马莎, 等. 基于格的代理签名方案[J]. 湖南大学学报:自然科学版, 2011, 38(6): 84–88.

    XIA Feng, YANG Bo, MA Sha, et al. Lattice-based proxy signature scheme[J]. Journal of Hunan University:Natural Sciences, 2011, 38(6): 84–88.
    [7]
    江明明, 胡予濮, 王保仓, 等. 格上的高效代理签名[J]. 北京邮电大学学报, 2014, 37(3): 89–92. doi: 10.13190/j.jbupt.2014.03.018

    JIANG Mingming, HU Yupu, WANG Baocang, et al. Efficient proxy signature over lattices[J]. Journal of Beijing University of Posts and Telecommunications, 2014, 37(3): 89–92. doi: 10.13190/j.jbupt.2014.03.018
    [8]
    陈虎, 胡予濮, 连至助, 等. 有效的格上无证书加密方案[J]. 软件学报, 2016, 27(11): 2884–2897. doi: 10.13328/j.cnki.jos.004884

    CHEN Hu, HU Yupu, LIAN Zhizhu, et al. Efficient certificateless encryption schemes from lattices[J]. Journal of Software, 2016, 27(11): 2884–2897. doi: 10.13328/j.cnki.jos.004884
    [9]
    路秀华, 温巧燕, 王励成, 等. 无陷门格基签密方案[J]. 电子与信息学报, 2016, 38(9): 2287–2293. doi: 10.11999/JEIT151044

    LU Xiuhua, WEN Qiaoyan, WANG Licheng, et al. A lattice-based signcryption scheme without trapdoors[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2287–2293. doi: 10.11999/JEIT151044
    [10]
    欧海文, 范祯, 蔡斌思, 等. 理想格上基于身份的代理签名[J]. 计算机应用与软件, 2018, 35(1): 312–317. doi: 10.3969/j.issn.1000-386x.2018.01.054

    OU Haiwen, FAN Zhen, CAI Binsi, et al. Identity-based proxy signature scheme over ideal lattices[J]. Computer Applications and Software, 2018, 35(1): 312–317. doi: 10.3969/j.issn.1000-386x.2018.01.054
    [11]
    GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. The 40th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 2008: 197–206.
    [12]
    MICCIANCIO D and REGEV O. Worst-case to average-case reductions based on Gaussian measures[J]. SIAM Journal on Computing, 2007, 37(1): 267–302. doi: 10.1137/S0097539705447360
    [13]
    LYUBASHEVSKY V. Lattice signatures without trapdoors[C]. The 31st Annual International Conference on Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012: 738–755.
    [14]
    俞惠芳, 杨波. 可证安全的无证书混合签密[J]. 计算机学报, 2015, 38(4): 804–813.

    YU Huifang and YANG Bo. Provably secure certificateless hybrid signcryption[J]. Chinese Journal of Computers, 2015, 38(4): 804–813.
    [15]
    SATO S and SHIKATA J. Lattice-based signcryption without random oracle[C]. The 9th International Conference on Post- Quantum Cryptography, Fort Lauderdale, USA, 2018: 331–351.
    [16]
    YU Huifang, BAI Lu, HAO Ming, et al. Certificateless signcryption scheme from lattice[J]. IEEE Systems Journal, 2021, 15(2): 2687–2695. doi: 10.1109/JSYST.2020.3007519
    [17]
    LINDNER R and PEIKERT C. Better key sizes (and attacks) for LWE-based encryption[C]. The Cryptographers' Track at the RSA Conference on Topics in Cryptology, San Francisco, USA, 2011: 319–339.
    [18]
    MICCIANCIO D and PEIKERT C. Trapdoors for lattices: Simpler, tighter, faster, smaller[C]. The 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012: 700–718.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (496) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return