Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Jin LU, Xin WANG. Cost-reference Particle Filter Bank Based Track-before-detecting Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2815-2823. doi: 10.11999/JEIT210234
Citation: Jin LU, Xin WANG. Cost-reference Particle Filter Bank Based Track-before-detecting Algorithm[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2815-2823. doi: 10.11999/JEIT210234

Cost-reference Particle Filter Bank Based Track-before-detecting Algorithm

doi: 10.11999/JEIT210234
Funds:  The National Natural Science Foundation of China (61801281), The Scientific Research Project of Shaanxi Provincial Department of Education (17JK0084)
  • Received Date: 2021-03-22
  • Rev Recd Date: 2021-08-18
  • Available Online: 2021-09-16
  • Publish Date: 2021-10-18
  • Detection and tracking of low signal-to-noise ratio nonlinear frequency modulated signal can be effectively solved by Track-Before-Detecting (TBD) algorithms based on particle filters. However, the algorithms are high in computational complexity and hard to be implemented in parallel. Furthermore, because of the comparatively long convergence processing, the detection and state estimation capabilities of the particle filters based methods are limited. In this paper, a cost-reference particle filter bank is proposed, which does not depend on the distribution of the system and has an entirely parallel structure. Then a detection method based on the cost-reference particle filter bank is proposed. Simulation results of two nonlinear frequency modulated signals detection and estimation illustrate that the propose method has better performance in detection, estimation, and running speed than similar methods, such as particle filter based track-before-detecting algorithm, Rutten particle filter based TBD algorithm.
  • loading
  • [1]
    ZHOU Gongjian, WANG Liangliang, and KIRUBARAJAN T. A pseudo-spectrum approach for weak target detection and tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3394–3412. doi: 10.1109/TAES.2019.2906419
    [2]
    TU Xiaotong, HU Yue, LI Fucai, et al. Instantaneous frequency estimation for nonlinear FM signal based on modified polynomial chirplet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(11): 2898–2908. doi: 10.1109/TIM.2017.2730982
    [3]
    WANG Wei, WANG R, ZHANG Zhimin, et al. First demonstration of airborne SAR with nonlinear FM chirp waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 247–251. doi: 10.1109/LGRS.2015.2508102
    [4]
    LIU Jiafang, ZHANG Yunhua, and DONG Xiao. Dechirping compression method for nonlinear frequency modulation waveforms[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 377–381. doi: 10.1109/LGRS.2018.2875893
    [5]
    SHUI Penglang, BAO Zheng, and SU Hongtao. Nonparametric detection of FM signals using time-frequency ridge energy[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1749–1760. doi: 10.1109/tsp.2007.909322
    [6]
    CANDÈS E J, CHARLTON P R, and HELGASON H. Detecting highly oscillatory signals by chirplet path pursuit[J]. Applied and Computational Harmonic Analysis, 2008, 24(1): 14–40. doi: 10.1016/j.acha.2007.04.003
    [7]
    SALMOND D J and BIRCH H. A particle filter for track-before-detect[C]. 2001 American Control Conference. (Cat. No. 01CH37148), Arlington, USA, 2001: 3755–3760. doi: 10.1109/acc.2001.946220
    [8]
    LU Jin, SHUI Penglang, and SU Hongtao. Track-before-detect method based on cost-reference particle filter in non-linear dynamic systems with unknown statistics[J]. IET Signal Processing, 2014, 8(1): 85–94. doi: 10.1049/iet-spr.2013.0117
    [9]
    SHUI Penglang, SHI Sainan, LU Jin, et al. Detection of nonlinear FM signals via forward-backward cost-reference particle filter[J]. Digital Signal Processing, 2016, 48: 104–115. doi: 10.1016/j.dsp.2015.09.016
    [10]
    RISTIC B, ARULAMPALM S, and GORDON N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[M]. Boston: Artech House, 2004: 239–258.
    [11]
    RUTTEN M G, RISTIC B, and GORDON N J. A comparison of particle filters for recursive track-before-detect[C]. The 7th International Conference on Information Fusion, Philadelphia, USA, 2005: 169–175. doi: 10.1109/ICIF.2005.1591851.
    [12]
    YI Wei, FU Lingzhi, GARCÍA-FERNÁNDEZ Á F, et al. Particle filtering based track-before-detect method for passive array sonar systems[J]. Signal Processing, 2019, 165: 303–314. doi: 10.1016/j.sigpro.2019.07.027
    [13]
    ZHANG Tianzhu, XU Changsheng, and YANG M H. Learning multi-task correlation particle filters for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 365–378. doi: 10.1109/TPAMI.2018.2797062
    [14]
    VITETTA G M, SIRIGNANO E, DI VIESTI P, et al. Marginalized particle filtering and related filtering techniques as message passing[J]. IEEE Transactions on Signal Processing, 2019, 67(6): 1522–1536. doi: 10.1109/TSP.2019.2893868
    [15]
    CHEN Hanxin, FAN Dongliang, FANG Lu, et al. Particle swarm optimization algorithm with mutation operator for particle filter noise reduction in mechanical fault diagnosis[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(10): 2058012. doi: 10.1142/S0218001420580124
    [16]
    ZENG Nianyin, WANG Zidong, ZHANG Hong, et al. An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips[J]. IEEE Transactions on Nanotechnology, 2019, 18: 819–829. doi: 10.1109/TNANO.2019.2932271
    [17]
    MÍGUEZ J, BUGALLO M F, and DJURIĆ P M. A new class of particle filters for random dynamic systems with unknown statistics[J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004(15): 303619. doi: 10.1155/S1110865704406039
    [18]
    MÍGUEZ J. Analysis of parallelizable resampling algorithms for particle filtering[J]. Signal Processing, 2007, 87(12): 3155–3174. doi: 10.1016/j.sigpro.2007.06.011
    [19]
    NOVEY M, ADALI T, and ROY A. Correspondence: A complex generalized Gaussian distribution-characterization, generation, and estimation[J]. IEEE Transactions on Signal Processing, 2010, 58(3): 1427–1433. doi: 10.1109/TSP.2009.2036049
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (722) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return