Advanced Search
Volume 44 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LU Xutao, ZHI Chaoqun, ZHANG Lina, QIN Yingwei, LI Jing, WANG Ying. Multi-UAV Regional Patrol Mission Planning Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(1): 187-194. doi: 10.11999/JEIT210219
Citation: LU Xutao, ZHI Chaoqun, ZHANG Lina, QIN Yingwei, LI Jing, WANG Ying. Multi-UAV Regional Patrol Mission Planning Strategy[J]. Journal of Electronics & Information Technology, 2022, 44(1): 187-194. doi: 10.11999/JEIT210219

Multi-UAV Regional Patrol Mission Planning Strategy

doi: 10.11999/JEIT210219
Funds:  Shanxi Applied Basic Research Project (201701D221124), Shanxi Key R & D Project (201903D221025), Shanxi Youth Science and Technology Fund (201801D221236)
  • Received Date: 2021-03-15
  • Accepted Date: 2021-11-17
  • Rev Recd Date: 2021-11-17
  • Available Online: 2021-11-20
  • Publish Date: 2022-01-10
  • At present, the emergency search Unmanned Aerial Vehicle (UAV) cluster has problems such as low search efficiency, low coverage integrity, and poor stability of multi-unit network. In this regard, a terminal-routing UAV area search task planning strategy based on Optimized Fuzzy C-Means Algorithm (O-FCMA) combined with Optimize-Hybrid Particle Swarm Optimization (O-HPSO) algorithm is proposed. Based on the scope of UAV monitoring area, by establishing the spatial model of the search area, this paper further uses O-FCMA to divide the area geometrically, and uses O-HPSO to realize the path planning in the divided area, so as to realize the planning of the overall task of multi-UAV cluster search. The simulation experiment is performed. The use of O-HPSO combined with O-FCMA for passive UAV area search task is compared with ACO or simulated annealing algorithm combined with K clustering algorithm or FCMA, under the condition of ensuring the full coverage of the search area, active search compared with non-active UAV, the UAV decision time is reduced by 7%~21%, 16%~31%, and the search efficiency is increased by 7%~13%, 3%~7%. The method reduces effectively the UAV cluster decision time and improves the search efficiency.
  • loading
  • [1]
    杨庆, 段海滨. 仿鸿雁编队的无人机集群飞行验证[J]. 工程科学学报, 2019, 41(12): 1599–1608.

    YANG Qing and DUAN Haibin. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12): 1599–1608.
    [2]
    李宪强, 马戎, 张伸, 等. 蚁群算法的改进设计及在航迹规划中的应用[J]. 航空学报, 2020, 41(S2): 724381.

    LI Xianqiang, MA Rong, ZHANG Shen, et al. Improved design of ant colony algorithm and its application in path planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724381.
    [3]
    张小孟, 胡永江, 李文广, 等. 基于改进人工蜂群算法的多无人机灭火任务规划[J]. 中国惯性技术学报, 2020, 28(4): 528–536.

    ZHANG Xiaomeng, HU Yongjiang, LI Wenguang, et al. Multi-UAV fire fighting mission planning based on improved artificial bee colony algorithm[J]. Journal of Chinese Inertial Technology, 2020, 28(4): 528–536.
    [4]
    吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286.

    WU Kun and TAN Shaochang. UAV route planning based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286.
    [5]
    曹建秋, 张广言, 徐鹏. A*初始化的变异灰狼优化的无人机路径规划[J/OL]. 计算机工程与应用. http://kns.cnki.net/kcms/detail/11.2127.TP.20201225.0932.014.html, 2021.

    CAO Jianqiu, ZHANG Guangyan, and XU Peng. A* Initialized mutable gray wolf optimazer for UAV path planning[J/OL]. Computer Engineering and Applications. http://kns.cnki.net/kcms/detail/11.2127.TP.20201225.0932.014.html, 2021.
    [6]
    范叶满, 沈楷程, 王东, 等. 基于模拟退火算法的无人机山地作业能耗最优路径规划[J]. 农业机械学报, 2020, 51(10): 34–41. doi: 10.6041/j.issn.1000-1298.2020.10.005

    FAN Yeman, SHEN Kaicheng, WANG Dong, et al. Optimal energy consumption path planning of UAV on mountain region based on simulated annealing algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 34–41. doi: 10.6041/j.issn.1000-1298.2020.10.005
    [7]
    张强, 陈兵奎, 刘小雍, 等. 基于改进势场蚁群算法的移动机器人最优路径规划[J]. 农业机械学报, 2019, 50(5): 23–32,42. doi: 10.6041/j.issn.1000-1298.2019.05.003

    ZHANG Qiang, CHEN Bingkui, LIU Xiaoyong, et al. Ant colony optimization with improved potential field heuristic for robot path planning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 23–32,42. doi: 10.6041/j.issn.1000-1298.2019.05.003
    [8]
    孙炜, 吕云峰, 唐宏伟, 等. 基于一种改进A*算法的移动机器人路径规划[J]. 湖南大学学报:自然科学版, 2017, 44(4): 94–101.

    SUN Wei, LÜ Yunfeng, TANG Hongwei, et al. Mobile robot path planning based on an improved A* algorithm[J]. Journal of Hunan University:Natural Sciences, 2017, 44(4): 94–101.
    [9]
    孙亮, 王冰, 郭栋, 等. 求解不确定型车辆路径问题的弱鲁棒优化方法[J]. 国防科技大学学报, 2020, 42(3): 30–38. doi: 10.11887/j.cn.202003005

    SUN Liang, WANG Bing, GUO Dong, et al. Light robust optimization approach for vehicle routing problem under uncertainty[J]. Journal of National University of Defense Technology, 2020, 42(3): 30–38. doi: 10.11887/j.cn.202003005
    [10]
    毛新军, 杨硕, 黄裕泓, 等. 自主机器人多智能体软件架构及伴随行为机制[J]. 软件学报, 2020, 31(6): 1619–1637.

    MAO Xinjun, YANG Shuo, HUANG Yuhong, et al. Towards software architecture and accompanying behavior mechanism of autonomous robotic control software based on multi-agent system[J]. Journal of Software, 2020, 31(6): 1619–1637.
    [11]
    孙鹏耀, 黄炎焱, 潘尧. 基于改进势场法的移动机器人路径规划[J]. 兵工学报, 2020, 41(10): 2106–2121. doi: 10.3969/j.issn.1000-1093.2020.10.021

    SUN Pengyao, HUANG Yanyan, and PAN Yao. Path planning of mobile robots based on improved potential field algorithm[J]. Acta Armamentarii, 2020, 41(10): 2106–2121. doi: 10.3969/j.issn.1000-1093.2020.10.021
    [12]
    华冰, 孙胜刚, 吴云华, 等. 基于CGAPIO的航天器编队重构路径规划方法[J]. 北京航空航天大学学报, 2021, 47(2): 223–230.

    HUA Bing, SUN Shenggang, WU Yunhua, et al. Path planning method for spacecraft formation reconfiguration based on CGAPIO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 223–230.
    [13]
    蔺一帅, 李青山, 陆鹏浩, 等. 智能仓储货位规划与AGV路径规划协同优化算法[J]. 软件学报, 2020, 31(9): 2770–2784.

    LIN Yishuai, LI Qingshan, LU Penghao, et al. Shelf and AGV path cooperative optimization algorithm used in intelligent warehousing[J]. Journal of Software, 2020, 31(9): 2770–2784.
    [14]
    CHAN F T S, WANG Z X, GOSWAMI A, et al. Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations[J]. International Journal of Production Research, 2020, 58(7): 5155–5174.
    [15]
    KHAN Z, KOUBAA A, and FARMAN H. Smart route: Internet-of-Vehicles (IoV)-based Congestion Detection and avoidance (IoV-Based CDA) using rerouting planning[J]. Applied Sciences, 2020, 10(13): 4541. doi: 10.3390/app10134541
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (1126) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return