| Citation: | JIN Zhengmeng, LIAN Xiaoyu, YANG Tianji. Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184 | 
 
	                | [1] | KASS M, WITKIN A, and TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321–331. doi:  10.1007/BF00133570 | 
| [2] | CASELLES V, KIMMEL R, and SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61–79. doi:  10.1023/A:1007979827043 | 
| [3] | MUMFORD D and SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577–685. doi:  10.1002/cpa.3160420503 | 
| [4] | CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266–277. doi:  10.1109/83.902291 | 
| [5] | BADSHAH N and CHEN Ke. Image selective segmentation under geometrical constraints using an active contour approach[J]. Communications in Computational Physics, 2010, 7(4): 759–778. doi:  10.4208/cicp.2009.09.026 | 
| [6] | LE GUYADER C and GOUT C. Geodesic active contour under geometrical conditions: Theory and 3D applications[J]. Numerical Algorithms, 2008, 48(1/3): 105–133. doi:  10.1007/s11075-008-9174-y | 
| [7] | RADA L and CHEN Ke. Improved selective segmentation model using one level-set[J]. Journal of Algorithms & Computational Technology, 2013, 7(4): 509–540. doi:  10.1260/1748-3018.7.4.509 | 
| [8] | SPENCER J and CHEN Ke. A convex and selective variational model for image segmentation[J]. Communications in Mathematical Sciences, 2015, 13(6): 1453–1472. doi:  10.4310/CMS.2015.v13.n6.a5 | 
| [9] | ROBERTS M, CHEN Ke, and IRION K L. A convex geodesic selective model for image segmentation[J]. Journal of Mathematical Imaging and Vision, 2019, 61(4): 482–503. doi:  10.1007/s10851-018-0857-2 | 
| [10] | ALI H, FAISAL S, CHEN Ke, et al. Image-selective segmentation model for multi-regions within the object of interest with application to medical disease[J]. The Visual Computer, 2021, 37(5): 939–955. doi:  10.1007/s00371-020-01845-1 | 
| [11] | KAPURIYA B R, PRADHAN D, and SHARMA R. Geometric constraints based selective segmentation for vector valued images[C]. The IEEE 2020 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2020: 1–5. | 
| [12] | ZHANG Jianjun and NAGY J G. An effective alternating direction method of multipliers for color image restoration[J]. Applied Numerical Mathematics, 2021, 164: 43–56. doi:  10.1016/j.apnum.2020.07.008 | 
| [13] | PADCHAROEN A, KITKUAN D, KUMAM P, et al. Accelerated alternating minimization algorithm for Poisson noisy image recovery[J]. Inverse Problems in Science and Engineering, 2020, 28(7): 1031–1056. doi:  10.1080/17415977.2019.1709454 | 
| [14] | CHAN T F, ESEDOGLU S, and NIKOLOVA M. Algorithms for finding global minimizers of image segmentation and denoising models[J]. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632–1648. doi:  10.1137/040615286 | 
| [15] | VAASSEN F, HAZELAAR C, VANIQUI A, et al. Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy[J]. Physics and Imaging in Radiation Oncology, 2020, 13: 1–6. doi:  10.1016/j.phro.2019.12.001 | 
| [16] | LIU Qiong, PENG Hao, CHEN Jifeng, et al. Design and implementation of parallel algorithm for image matching based on Hausdorff Distance[J]. Microprocessors and Microsystems, 2021, 82: 103919. doi:  10.1016/j.micpro.2021.103919 | 
