Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
JIN Zhengmeng, LIAN Xiaoyu, YANG Tianji. Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184
Citation: JIN Zhengmeng, LIAN Xiaoyu, YANG Tianji. Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2522-2530. doi: 10.11999/JEIT210184

Fast Algorithm of Image Selective Segmentation Model Based on Convex Relaxation

doi: 10.11999/JEIT210184
Funds:  The National Natural Science Foundation of China (11671004, 11771005)
  • Received Date: 2021-03-03
  • Accepted Date: 2022-03-07
  • Rev Recd Date: 2022-03-07
  • Available Online: 2022-03-18
  • Publish Date: 2022-07-25
  • In view of the non-convex defect of the image selective segmentation model based on geodesic distance, a convex selective segmentation model by convex relaxation is proposed. The relationship between the solution of the convex model and that of the original model is given. Then by incorporating the Alternating Direction Method of Multipliers (ADMM), this paper designs a fast algorithm for numerically solving the convex model and gives the convergence of the algorithm. Finally, numerical experimental results show that convergence speed of the proposed algorithm is much better than the original algorithm based on the additive operator splitting method, and the segmentation results of the proposed algorithm are more accurate.
  • loading
  • [1]
    KASS M, WITKIN A, and TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321–331. doi: 10.1007/BF00133570
    [2]
    CASELLES V, KIMMEL R, and SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61–79. doi: 10.1023/A:1007979827043
    [3]
    MUMFORD D and SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577–685. doi: 10.1002/cpa.3160420503
    [4]
    CHAN T F and VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266–277. doi: 10.1109/83.902291
    [5]
    BADSHAH N and CHEN Ke. Image selective segmentation under geometrical constraints using an active contour approach[J]. Communications in Computational Physics, 2010, 7(4): 759–778. doi: 10.4208/cicp.2009.09.026
    [6]
    LE GUYADER C and GOUT C. Geodesic active contour under geometrical conditions: Theory and 3D applications[J]. Numerical Algorithms, 2008, 48(1/3): 105–133. doi: 10.1007/s11075-008-9174-y
    [7]
    RADA L and CHEN Ke. Improved selective segmentation model using one level-set[J]. Journal of Algorithms & Computational Technology, 2013, 7(4): 509–540. doi: 10.1260/1748-3018.7.4.509
    [8]
    SPENCER J and CHEN Ke. A convex and selective variational model for image segmentation[J]. Communications in Mathematical Sciences, 2015, 13(6): 1453–1472. doi: 10.4310/CMS.2015.v13.n6.a5
    [9]
    ROBERTS M, CHEN Ke, and IRION K L. A convex geodesic selective model for image segmentation[J]. Journal of Mathematical Imaging and Vision, 2019, 61(4): 482–503. doi: 10.1007/s10851-018-0857-2
    [10]
    ALI H, FAISAL S, CHEN Ke, et al. Image-selective segmentation model for multi-regions within the object of interest with application to medical disease[J]. The Visual Computer, 2021, 37(5): 939–955. doi: 10.1007/s00371-020-01845-1
    [11]
    KAPURIYA B R, PRADHAN D, and SHARMA R. Geometric constraints based selective segmentation for vector valued images[C]. The IEEE 2020 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2020: 1–5.
    [12]
    ZHANG Jianjun and NAGY J G. An effective alternating direction method of multipliers for color image restoration[J]. Applied Numerical Mathematics, 2021, 164: 43–56. doi: 10.1016/j.apnum.2020.07.008
    [13]
    PADCHAROEN A, KITKUAN D, KUMAM P, et al. Accelerated alternating minimization algorithm for Poisson noisy image recovery[J]. Inverse Problems in Science and Engineering, 2020, 28(7): 1031–1056. doi: 10.1080/17415977.2019.1709454
    [14]
    CHAN T F, ESEDOGLU S, and NIKOLOVA M. Algorithms for finding global minimizers of image segmentation and denoising models[J]. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632–1648. doi: 10.1137/040615286
    [15]
    VAASSEN F, HAZELAAR C, VANIQUI A, et al. Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy[J]. Physics and Imaging in Radiation Oncology, 2020, 13: 1–6. doi: 10.1016/j.phro.2019.12.001
    [16]
    LIU Qiong, PENG Hao, CHEN Jifeng, et al. Design and implementation of parallel algorithm for image matching based on Hausdorff Distance[J]. Microprocessors and Microsystems, 2021, 82: 103919. doi: 10.1016/j.micpro.2021.103919
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(6)

    Article Metrics

    Article views (442) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return