Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
Jiang Yu-Wen, Tan Le-Yi, Wang Shou-Jue. Saliency Detected Model Based on Selective Edges Prior[J]. Journal of Electronics & Information Technology, 2015, 37(1): 130-136. doi: 10.11999/JEIT140119
Citation: SI Jingjing, FU Gengchen, CHENG Yinbo, LIU Chang. Tunable Diode Laser Absorption Tomography Based on Hierarchical Discretization and Residual Network[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2539-2546. doi: 10.11999/JEIT210160

Tunable Diode Laser Absorption Tomography Based on Hierarchical Discretization and Residual Network

doi: 10.11999/JEIT210160
Funds:  The National Natural Science Foundation of China (61701429), The Natural Science Foundation of Hebei Province (F2021203027), The Science and Technology Program of Universities and Colleges in Hebei Province (QN2019133)
  • Received Date: 2021-02-25
  • Rev Recd Date: 2021-07-19
  • Available Online: 2021-07-28
  • Publish Date: 2022-07-25
  • Implementation of fast, accurate and adaptable reconstruction is one of the core topics in Tunable Diode Laser Absorption Tomography (TDLAT). In existing algorithms, a certain region at the center of combustion field is usually set as the Region of Interest (RoI). Temperature image of RoI is reconstructed from the absorbance for laser beams passing through the whole tomographic field. It will cause deviations in the reconstructed image. To address this issue, a spatial hierarchical discretization and a Hierarchical Temperature Tomography scheme based on Residual Network (HTT-ResNet) are proposed for TDLAT. It reconstructs the temperature image of the entire combustion field from limited amount of absorbance measurements, and configures optimally computational resources and imaging resolution to describe the temperature distribution in RoI with better spatial resolution. Experiments using random multimodal Gaussian flame models and the measured data of the actual TDLAT system both show that temperature images reconstructed by HTT-ResNet can accurately locate the flame and clearly describe the temperature profile in the combustion field.
  • [1]
    LIU Chang, CAO Zhang, LIN Yuzhen, et al. Online cross-sectional monitoring of a swirling flame using TDLAS tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1338–1348. doi: 10.1109/TIM.2018.2799098
    [2]
    JANG H and CHOI D. Similarity analysis for time series-based 2D temperature measurement of engine exhaust gas in TDLAT[J]. Applied Sciences, 2020, 10(1): 285. doi: 10.3390/app10010285
    [3]
    YU Tao and CAI Weiwei. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 2017, 56(8): 2183–2194. doi: 10.1364/AO.56.002183
    [4]
    CAI Weiwei and KAMINSKI C F. A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry[J]. Applied Physics B, 2015, 119(1): 29–35. doi: 10.1007/s00340-015-6012-5
    [5]
    文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715

    WEN Chenglin and LV FeiYa. Review on deep learning based fault diagnosis[J]. Journal of Electronics &Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
    [6]
    HENDRIKSEN A A, PELT D M, PALENSTIJN W J, et al. On-the-fly machine learning for improving image resolution in tomography[J]. Applied Sciences, 2019, 9(12): 2445. doi: 10.3390/app9122445
    [7]
    DAVOUDI N, DEÁN-BEN X L, and RAZANSKY D. Deep learning optoacoustic tomography with sparse data[J]. Nature Machine Intelligence, 2019, 1(10): 453–460. doi: 10.1038/s42256-019-0095-3
    [8]
    RYU D, JO Y, YOO J, et al. Deep learning-enabled image quality control in tomographic reconstruction: Robust optical diffraction tomography[J]. Scientific Reports, 2019, 9: 15239. doi: 10.1038/s41598-019-51363-x
    [9]
    JIN Ying, ZHANG Wanqing, SONG Yang, et al. Three-dimensional rapid flame chemiluminescence tomography via deep learning[J]. Optics Express, 2019, 27(19): 27308–27334. doi: 10.1364/OE.27.027308
    [10]
    YU Tao, CAI Weiwei, and LIU Yingzheng. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics[J]. Review of Scientific Instruments, 2018, 89(4): 043101. doi: 10.1063/1.5016403
    [11]
    HUANG Jianqing, LIU Hecong, DAI Jinghang, et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 187–193. doi: 10.1016/j.jqsrt.2018.07.011
    [12]
    HUANG Jianqing, ZHAO Jianan, and CAI Weiwei. Compressing convolutional neural networks using POD for the reconstruction of nonlinear tomographic absorption spectroscopy[J]. Computer Physics Communications, 2019, 241: 33–39. doi: 10.1016/j.cpc.2019.03.020
    [13]
    赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036

    ZHAO Xiaoqiang and SONG Zhaoyang. Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036
    [14]
    BAO Yong, ZHANG Rui, ENEMALI G, et al. Relative entropy regularized TDLAS tomography for robust temperature imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4501909. doi: 10.1109/TIM.2020.3037950
  • Cited by

    Periodical cited type(20)

    1. 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 .
    2. 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 .
    3. 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 .
    4. 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 .
    5. 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 .
    6. 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 .
    7. 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 .
    8. 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . 本站查看
    9. 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 .
    10. 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 .
    11. 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 .
    12. 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 .
    13. 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 .
    14. 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . 本站查看
    15. 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . 本站查看
    16. 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 .
    17. 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 .
    18. 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 .
    19. 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 .
    20. 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . 本站查看

    Other cited types(21)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (938) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return