Advanced Search
Volume 44 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
SI Jingjing, FU Gengchen, CHENG Yinbo, LIU Chang. Tunable Diode Laser Absorption Tomography Based on Hierarchical Discretization and Residual Network[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2539-2546. doi: 10.11999/JEIT210160
Citation: SI Jingjing, FU Gengchen, CHENG Yinbo, LIU Chang. Tunable Diode Laser Absorption Tomography Based on Hierarchical Discretization and Residual Network[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2539-2546. doi: 10.11999/JEIT210160

Tunable Diode Laser Absorption Tomography Based on Hierarchical Discretization and Residual Network

doi: 10.11999/JEIT210160
Funds:  The National Natural Science Foundation of China (61701429), The Natural Science Foundation of Hebei Province (F2021203027), The Science and Technology Program of Universities and Colleges in Hebei Province (QN2019133)
  • Received Date: 2021-02-25
  • Rev Recd Date: 2021-07-19
  • Available Online: 2021-07-28
  • Publish Date: 2022-07-25
  • Implementation of fast, accurate and adaptable reconstruction is one of the core topics in Tunable Diode Laser Absorption Tomography (TDLAT). In existing algorithms, a certain region at the center of combustion field is usually set as the Region of Interest (RoI). Temperature image of RoI is reconstructed from the absorbance for laser beams passing through the whole tomographic field. It will cause deviations in the reconstructed image. To address this issue, a spatial hierarchical discretization and a Hierarchical Temperature Tomography scheme based on Residual Network (HTT-ResNet) are proposed for TDLAT. It reconstructs the temperature image of the entire combustion field from limited amount of absorbance measurements, and configures optimally computational resources and imaging resolution to describe the temperature distribution in RoI with better spatial resolution. Experiments using random multimodal Gaussian flame models and the measured data of the actual TDLAT system both show that temperature images reconstructed by HTT-ResNet can accurately locate the flame and clearly describe the temperature profile in the combustion field.
  • loading
  • [1]
    LIU Chang, CAO Zhang, LIN Yuzhen, et al. Online cross-sectional monitoring of a swirling flame using TDLAS tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1338–1348. doi: 10.1109/TIM.2018.2799098
    [2]
    JANG H and CHOI D. Similarity analysis for time series-based 2D temperature measurement of engine exhaust gas in TDLAT[J]. Applied Sciences, 2020, 10(1): 285. doi: 10.3390/app10010285
    [3]
    YU Tao and CAI Weiwei. Benchmark evaluation of inversion algorithms for tomographic absorption spectroscopy[J]. Applied Optics, 2017, 56(8): 2183–2194. doi: 10.1364/AO.56.002183
    [4]
    CAI Weiwei and KAMINSKI C F. A numerical investigation of high-resolution multispectral absorption tomography for flow thermometry[J]. Applied Physics B, 2015, 119(1): 29–35. doi: 10.1007/s00340-015-6012-5
    [5]
    文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715

    WEN Chenglin and LV FeiYa. Review on deep learning based fault diagnosis[J]. Journal of Electronics &Information Technology, 2020, 42(1): 234–248. doi: 10.11999/JEIT190715
    [6]
    HENDRIKSEN A A, PELT D M, PALENSTIJN W J, et al. On-the-fly machine learning for improving image resolution in tomography[J]. Applied Sciences, 2019, 9(12): 2445. doi: 10.3390/app9122445
    [7]
    DAVOUDI N, DEÁN-BEN X L, and RAZANSKY D. Deep learning optoacoustic tomography with sparse data[J]. Nature Machine Intelligence, 2019, 1(10): 453–460. doi: 10.1038/s42256-019-0095-3
    [8]
    RYU D, JO Y, YOO J, et al. Deep learning-enabled image quality control in tomographic reconstruction: Robust optical diffraction tomography[J]. Scientific Reports, 2019, 9: 15239. doi: 10.1038/s41598-019-51363-x
    [9]
    JIN Ying, ZHANG Wanqing, SONG Yang, et al. Three-dimensional rapid flame chemiluminescence tomography via deep learning[J]. Optics Express, 2019, 27(19): 27308–27334. doi: 10.1364/OE.27.027308
    [10]
    YU Tao, CAI Weiwei, and LIU Yingzheng. Rapid tomographic reconstruction based on machine learning for time-resolved combustion diagnostics[J]. Review of Scientific Instruments, 2018, 89(4): 043101. doi: 10.1063/1.5016403
    [11]
    HUANG Jianqing, LIU Hecong, DAI Jinghang, et al. Reconstruction for limited-data nonlinear tomographic absorption spectroscopy via deep learning[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 218: 187–193. doi: 10.1016/j.jqsrt.2018.07.011
    [12]
    HUANG Jianqing, ZHAO Jianan, and CAI Weiwei. Compressing convolutional neural networks using POD for the reconstruction of nonlinear tomographic absorption spectroscopy[J]. Computer Physics Communications, 2019, 241: 33–39. doi: 10.1016/j.cpc.2019.03.020
    [13]
    赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036

    ZHAO Xiaoqiang and SONG Zhaoyang. Super-resolution reconstruction of deep residual network with multi-level skip connections[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2501–2508. doi: 10.11999/JEIT190036
    [14]
    BAO Yong, ZHANG Rui, ENEMALI G, et al. Relative entropy regularized TDLAS tomography for robust temperature imaging[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 4501909. doi: 10.1109/TIM.2020.3037950
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (864) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return