Advanced Search
Volume 43 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Jing LEI, Shuiqin WANG, Wei HUANG, Xiaohuan PENG. Survey of Multi-user Detection Algorithms for Sparse Code Multiple Access System[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2757-2770. doi: 10.11999/JEIT210118
Citation: Jing LEI, Shuiqin WANG, Wei HUANG, Xiaohuan PENG. Survey of Multi-user Detection Algorithms for Sparse Code Multiple Access System[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2757-2770. doi: 10.11999/JEIT210118

Survey of Multi-user Detection Algorithms for Sparse Code Multiple Access System

doi: 10.11999/JEIT210118
Funds:  The National Natural Science Foundation of China (61702536), The Natural Science Foundation of Hunan Province (2018JJ3609)
  • Received Date: 2021-02-01
  • Rev Recd Date: 2021-05-28
  • Available Online: 2021-06-22
  • Publish Date: 2021-10-18
  • Sparse Code Multiple Access (SCMA) is a non-orthogonal multiple access scheme with high spectrum efficiency and massive connectivity. Multi-user detection is a key issue of SCMA system and how to reduce the complexity of detection algorithms has become a research hotspot in the field of multiple access. This paper reviews the existing multi-user detection algorithms from different factors that affect the complexity of the algorithms. Furthermore, the principle and performance of several typical multi-user detection algorithms are introduced and compared. In addition, the improved ideas of multi-user detection algorithms for SCMA system are pointed out in this paper. Finally, the future development trend and challenges of SCMA detection algorithms are summarized and discussed.
  • loading
  • [1]
    ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/mvt.2019.2921208
    [2]
    BARIAH L, MOHJAZI L, MUHAIDAT S, et al. A prospective look: Key enabling technologies, applications and open research topics in 6G networks[J]. IEEE Access, 2020, 8: 174792–174820. doi: 10.1109/ACCESS.2020.3019590
    [3]
    SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287
    [4]
    DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519
    [5]
    DOGRA A, JHA R K, and JAIN S. A survey on beyond 5G network with the advent of 6G: Architecture and emerging technologies[J]. IEEE Access, 2020, 9: 67512–67547. doi: 10.1109/ACCESS.2020.3031234
    [6]
    HOSHYAR R, RAZAVI R, and AL-IMARI M. LDS-OFDM an efficient multiple access technique[C]. 2010 IEEE 71st Vehicular Technology Conference, Taipei, China, 2010: 1–5. doi: 10.1109/VETECS.2010.5493941.
    [7]
    NIKOPOUR H and BALIGH H. Sparse code multiple access[C]. The 24th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, London, UK, 2013: 332–336. doi: 10.1109/PIMRC.2013.6666156.
    [8]
    WU Yiqun, ZHANG Shunqing, and CHEN Yan. Iterative multiuser receiver in sparse code multiple access systems[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 2918–2923. doi: 10.1109/ICC.2015.7248770.
    [9]
    HOSHYAR R, WATHAN F P, and TAFAZOLLI R. Novel low-density signature for synchronous CDMA systems over AWGN channel[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1616–1626. doi: 10.1109/TSP.2007.909320
    [10]
    TAHERZADEH M, NIKOPOUR H, BAYESTEH A, et al. SCMA codebook design[C]. The 80th IEEE Vehicular Technology Conference, Vancouver, Canada, 2014: 1–5. doi: 10.1109/VTCFall.2014.6966170.
    [11]
    CAI Donghong, FAN Pingzhi, LEI Xianfu, et al. Multi-dimensional SCMA codebook design based on constellation rotation and interleaving[C]. The 83rd IEEE Vehicular Technology Conference, Nanjing, China, 2016: 1–5. doi: 10.1109/VTCSpring.2016.7504356.
    [12]
    MHEICH Z, WEN Lei, XIAO Pei, et al. Design of SCMA codebooks based on golden angle modulation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1501–1509. doi: 10.1109/tvt.2018.2886953
    [13]
    CHEN Yenming and CHEN Jianwei. On the design of near-optimal sparse code multiple access codebooks[J]. IEEE Transactions on Communications, 2020, 68(5): 2950–2962. doi: 10.1109/tcomm.2020.2974213
    [14]
    ABEBE A T and KANG C G. Multiple codebook-based non-orthogonal multiple access[J]. IEEE Wireless Communications Letters, 2020, 9(5): 683–687. doi: 10.1109/lwc.2020.2965939
    [15]
    LU Lei, CHEN Yan, GUO Wenting, et al. Prototype for 5G new air interface technology SCMA and performance evaluation[J]. China Communications, 2015, 12(S1): 38–48. doi: 10.1109/CC.2015.7386169
    [16]
    NIKOPOUR H, YI E, BAYESTEH A, et al. SCMA for downlink multiple access of 5G wireless networks[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014: 3940–3945. doi: 10.1109/GLOCOM.2014.7037423.
    [17]
    AU K, ZHANG Liqing, NIKOPOUR H, et al. Uplink contention based SCMA for 5G radio access[C]. 2014 IEEE Globecom Workshops, Austin, USA, 2014: 900–905. doi: 10.1109/GLOCOMW.2014.7063547.
    [18]
    文磊. 多进制LDPC码在码分多址系统中的应用研究[D]. [博士论文], 国防科学技术大学, 2016.

    WEN Lei. Research of application of nonbinary LDPC codes in code division multiple access systems[D]. [Ph. D. dissertation], National University of Defense Technology, 2016.
    [19]
    VERDU S. Minimum probability of error for asynchronous multiple access communication systems[C]. MILCOM 1983-IEEE Military Communications Conference, Washington, USA, 1983: 213–219. doi: 10.1109/MILCOM.1983.4794684.
    [20]
    VARANASI M K and AAZHANG B. Near-optimum detection in synchronous code-division multiple-access systems[J]. IEEE Transactions on Communications, 1991, 39(5): 725–736. doi: 10.1109/26.87163
    [21]
    XIE Zhenhua, SHORT R T, and RUSHFORTH C K. A family of suboptimum detectors for coherent multiuser communications[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(4): 683–690. doi: 10.1109/49.54464
    [22]
    PATEL P and HOLTZMAN J. Analysis of a simple successive interference cancellation scheme in a DS/CDMA system[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(5): 796–807. doi: 10.1109/49.298053
    [23]
    KSCHISCHANG F R, FREY B J, and LOELIGER H A. Factor graphs and the sum-product algorithm[J]. IEEE Transactions on Information Theory, 2001, 47(2): 498–519. doi: 10.1109/18.910572
    [24]
    XIAO Kexin, XIAO Baicen, ZHANG Shutian, et al. Simplified multiuser detection for SCMA with sum-product algorithm[C]. 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP.2015.7341328.
    [25]
    LAI Ke, WEN Lei, LEI Jing, et al. Simplified sparse code multiple access receiver by using truncated messages[J]. IET Communications, 2018, 12(16): 1937–1945. doi: 10.1049/iet-com.2017.0774
    [26]
    PENG Xiaohuan, PAN Zhipeng, LAI Ke, et al. Low complexity receiver of sparse code multiple access based on dynamic trellis[J]. IET Communications, 2020, 14(9): 1420–1427. doi: 10.1049/iet-com.2019.0719
    [27]
    DU Yang, DONG Binhong, CHEN Zhi, et al. Shuffled multiuser detection schemes for uplink sparse code multiple access systems[J]. IEEE Communications Letters, 2016, 20(6): 1231–1234. doi: 10.1109/LCOMM.2016.2551742
    [28]
    DU Yang, DONG Binhong, CHEN Zhi, et al. Improved serial scheduling-based detection for sparse code multiple access systems[J]. IEEE Wireless Communications Letters, 2017, 6(5): 570–573. doi: 10.1109/LWC.2017.2717407
    [29]
    HAO Shuliang, SU Xin, ZENG Jie, et al. A low complexity SCMA detector based on avoiding redundant iterations[C]. The 12th International Symposium on Medical Information and Communication Technology, Sydney, Australia, 2018: 1–5. doi: 10.1109/ISMICT.2018.8573712.
    [30]
    DU Yang, DONG Binhong, CHEN Zhi, et al. A fast convergence multiuser detection scheme for uplink SCMA systems[J]. IEEE Wireless Communications Letters, 2016, 5(4): 388–391. doi: 10.1109/LWC.2016.2565581
    [31]
    WANG Yudan and QIU Ling. Edge selection-based low complexity detection scheme for SCMA system[C]. The 84th IEEE Vehicular Technology Conference, Montreal, Canada, 2016: 1–5. doi: 10.1109/VTCFall.2016.7880976.
    [32]
    DA SILVA B F, RUYET D L, and UCHÔA-FILHO B F. Threshold-based edge selection MPA for SCMA[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2957–2966. doi: 10.1109/tvt.2020.2966333
    [33]
    MU Hang, MA Zheng, ALHAJI M, et al. A fixed low complexity message pass algorithm detector for Up-link SCMA system[J]. IEEE Wireless Communications Letters, 2015, 4(6): 585–588. doi: 10.1109/LWC.2015.2469668
    [34]
    TAN Yuxi, GAO Zehua, GUO Siyan, et al. A dynamic multiuser detection scheme for uplink SCMA system[C]. The 17th IEEE International Conference on Communication Technology, Chengdu, China, 2017: 631–635. doi: 10.1109/ICCT.2017.8359713.
    [35]
    MA Xinying, YANG Lin, CHEN Zhi, et al. Low complexity detection based on dynamic factor graph for SCMA systems[J]. IEEE Communications Letters, 2017, 21(12): 2666–2669. doi: 10.1109/LCOMM.2017.2752745
    [36]
    WANG Yudan, QIU Ling, and LI Xinmin. An efficient low complexity gaussian approximation-based scheme for SCMA detection[C]. The 86th IEEE Vehicular Technology Conference, Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFall.2017.8287920.
    [37]
    MIN Baocheng and SUN Jun. Message passing algorithm with dynamic thresholds in SCMA[C]. 2019 International Conference on Communications, Information System and Computer Engineering, Haikou, China, 2019: 324–327. doi: 10.1109/CISCE.2019.00079.
    [38]
    ZHOU Yue, LUO Hejia, LI Rong, et al. A dynamic states reduction message passing algorithm for sparse code multiple access[C]. 2016 Wireless Telecommunications Symposium, London, UK, 2016: 1–5. doi: 10.1109/WTS.2016.7482042.
    [39]
    WEI Fan and CHEN Wen. A low complexity SCMA decoder based on list sphere decoding[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841513.
    [40]
    YANG Lin, MA Xinying, and SIU Yunming. Low complexity MPA detector based on sphere decoding for SCMA[J]. IEEE Communications Letters, 2017, 21(8): 1855–1858. doi: 10.1109/LCOMM.2017.2697425
    [41]
    VAMEGHESTAHBANATI M, MARSLAND I D, GOHARY R H, et al. Multidimensional constellations for uplink SCMA systems—a comparative study[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2169–2194. doi: 10.1109/comst.2019.2910569
    [42]
    VAMEGHESTAHBANATI M, MARSLAND I, GOHARY R H, et al. A novel SD-based detection for generalized SCMA constellations[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10278–10282. doi: 10.1109/tvt.2019.2932907
    [43]
    ZHANG Shunqing, XU Xiuqiang, LU Lei, et al. Sparse code multiple access: An energy efficient uplink approach for 5G wireless systems[C]. 2014 IEEE Global Communications Conference, Austin, USA, 2014: 4782–4787. doi: 10.1109/GLOCOM.2014.7037563.
    [44]
    WEI Dacheng, HAN Yuxi, ZHANG Sihai, et al. Weighted message passing algorithm for SCMA[C]. 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP.2015.7341312.
    [45]
    ZHANG Chenchen, LUO Yuan, and CHEN Yan. A low-complexity SCMA detector based on discretization[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2333–2345. doi: 10.1109/TWC.2018.2792425
    [46]
    YUAN Weijie, WU Nan, ZHANG A, et al. Iterative receiver design for FTN signaling aided sparse code multiple access[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 915–928. doi: 10.1109/twc.2019.2950000
    [47]
    TIAN Lining, ZHAO Minjian, ZHONG Jie, et al. Resource-selection based low complexity detector for uplink SCMA systems with multiple antennas[J]. IEEE Wireless Communications Letters, 2018, 7(3): 316–319. doi: 10.1109/lwc.2017.2775627
    [48]
    ZHANG Chuan, YANG Chao, PANG Xu, et al. Efficient sparse code multiple access decoder based on deterministic message passing algorithm[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3562–3574. doi: 10.1109/TVT.2020.2969020
    [49]
    LAI Ke, WEN Lei, LEI Jing, et al. Sub-graph based joint sparse graph for sparse code multiple access systems[J]. IEEE Access, 2018, 6: 25066–25080. doi: 10.1109/ACCESS.2018.2828126
    [50]
    WEI Fan and CHEN Wen. Low complexity iterative receiver design for sparse code multiple access[J]. IEEE Transactions on Communications, 2017, 65(2): 621–634. doi: 10.1109/TCOMM.2016.2631468
    [51]
    KURNIAWAN D, ARIFIANTO M S and KURNIAWAN A. Low complexity MIMO-SCMA detector[C]. The 5th IEEE International Conference on Wireless and Telematics, Yogyakarta, Indonesia, 2019: 1–5. doi: 10.1109/ICWT47785.2019.8978244.
    [52]
    DU Yang, DONG Binhong, CHEN Zhi, et al. Joint sparse graph-detector design for downlink MIMO-SCMA systems[J]. IEEE Wireless Communications Letters, 2017, 6(1): 14–17. doi: 10.1109/LWC.2016.2623785
    [53]
    MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092
    [54]
    RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
    [55]
    LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761
    [56]
    WANG Pan, LIU Leibo, ZHOU Sheng, et al. Near-optimal MIMO-SCMA uplink detection with low-complexity expectation propagation[J]. IEEE Transactions on Wireless Communications, 2020, 19(2): 1025–1037. doi: 10.1109/twc.2019.2950314
    [57]
    ABIDI I, HIZEM M, AHRIZ I, et al. Convolutional neural networks for blind decoding in sparse code multiple access[C]. The 15th International Wireless Communications & Mobile Computing Conference, Tangier, Morocco, 2019: 2007–2012. doi: 10.1109/IWCMC.2019.8766707.
    [58]
    KIM M, KIM N I, LEE W, et al. Deep learning-aided SCMA[J]. IEEE Communications Letters, 2018, 22(4): 720–723. doi: 10.1109/lcomm.2018.2792019
    [59]
    LU Chao, XU Wei, SHEN Hong, et al. An enhanced SCMA detector enabled by deep neural network[C]. 2018 IEEE/CIC International Conference on Communications in China, Beijing, China, 2018: 835–839. doi: 10.1109/ICCChina.2018.8641219.
    [60]
    LI Lanping, TANG Xiaohu, and TELLAMBURA C. Deep learning based modified message passing algorithm for sparse code multiple access[C]. The 9th International Workshop on Signal Design and its Applications in Communications, Dongguan, China, 2019: 1–5. doi: 10.1109/IWSDA46143.2019.8966120.
    [61]
    朱旋. SCMA场景下的极化码编解码方案改进研究[D]. [硕士论文], 哈尔滨工业大学, 2019. doi: 10.27061/d.cnki.ghgdu.2019.001047.

    ZHU Xuan. Research on improvement of polar code encoding and decoding scheme in SCMA scene[D]. [Master dissertation], Harbin Institute of Technology, 2019. doi: 10.27061/d.cnki.ghgdu.2019.001047.
    [62]
    PAN Zhipeng, LI Erbao, WEN Lei, et al. Joint iterative detection and decoding receiver for polar coded SCMA system[C]. 2018 IEEE International Conference on Communications Workshops, Kansas, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403620.
    [63]
    HAN Kaining, ZHANG Zhenbing, HU Jianhao, et al. A high performance joint detection and decoding scheme for LDPC coded SCMA system[C]. 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOMW.2016.7848813.
    [64]
    XIAO Baicen, XIAO Kexin, ZHANG Shutian, et al. Iterative detection and decoding for SCMA systems with LDPC codes[C]. 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. doi: 10.1109/WCSP.2015.7341325.
    [65]
    ZHANG Zhenbing, HAN Kaining, HU Jianhao, et al. Joint detection and decoding schemes for turbo coded SCMA systems[C]. 2016 IEEE Globecom Workshops, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOMW.2016.7848941.
    [66]
    GAO Pengyu, DU Yang, DONG Binhong, et al. Low-complexity CS-aided MPA detector for SCMA systems[J]. IEEE Communications Letters, 2018, 22(4): 784–787. doi: 10.1109/lcomm.2017.2779859
    [67]
    DURAK M H and ERTUĞ Ö. CS-based multiuser detector for SCMA systems[C]. 2019 International Symposium on Networks, Computers and Communications, Istanbul, Turkey, 2019: 1–4. doi: 10.1109/ISNCC.2019.8909149.
    [68]
    WANG Bichai, DAI Linglong, YUAN Yifei, et al. Compressive sensing based multi-user detection for uplink grant-free non-orthogonal multiple access[C]. The 82nd IEEE Vehicular Technology Conference, Boston, USA, 2015: 1–5. doi: 10.1109/VTCFall.2015.7390876.
    [69]
    WANG Feilong, ZHANG Yuyan, ZHAO Hui, et al. Active user detection of uplink grant-free SCMA in frequency selective channel[C]. The 87th IEEE Vehicular Technology Conference, Porto, Portugal, 2018: 1–6. doi: 10.1109/VTCSpring.2018.8417833.
    [70]
    Al-NAHHAL I, DOBRE O A, and IKKI S. On the complexity reduction of uplink sparse code multiple access for spatial modulation[J]. IEEE Transactions on Communications, 2020, 68(11): 6962–6974. doi: 10.1109/tcomm.2020.3018184
    [71]
    LAI Ke, LEI Jing, WEN Lei, et al. Codeword position index modulation design for sparse code multiple access system[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13273–13288. doi: 10.1109/tvt.2020.3022690
    [72]
    PAN Zhipeng, LUO Junshan, LEI Jing, et al. Uplink spatial modulation SCMA system[J]. IEEE Communications Letters, 2019, 23(1): 184–187. doi: 10.1109/LCOMM.2018.2882813
    [73]
    潘志鹏, 雷菁, 文磊, 等. 高斯近似消息传播SM-SCMA多用户检测算法[J]. 西安电子科技大学学报, 2020, 47(6): 37–44. doi: 10.19665/j.issn1001-2400.2020.06.006

    PAN Zhipeng, LEI Jing, WEN Lei, et al. Gaussian-approximated message passing algorithm for the SM-SCMA system[J]. Journal of Xidian University, 2020, 47(6): 37–44. doi: 10.19665/j.issn1001-2400.2020.06.006
    [74]
    王金福. 多域索引调制无线传输技术研究和验证[D]. [硕士论文], 电子科技大学, 2019.

    WANG Jinfu. Research and verification of wireless transmission technology based on multi-domain index modulation[D]. [Master dissertation], University of Electronic Science and Technology of China, 2019.
    [75]
    VILAIPORNSAWAI U, NIKOPOUR H, BAYESTEH A, et al. SCMA for open-loop joint transmission CoMP[C]. 2015 IEEE 82nd Vehicular Technology Conference, Boston, USA, 2015: 1–5. doi: 10.1109/VTCFall.2015.7391126.
    [76]
    CHEN Yan, BAYESTEH A, WU Yiqun, et al. SCMA: A promising non-orthogonal multiple access technology for 5G networks[C]. The 84th IEEE Vehicular Technology Conference, Montreal, Canada, 2016: 1–6. doi: 10.1109/VTCFall.2016.7881213.
    [77]
    宾芬. 无线分形蜂窝网络中的下行协同多点传输技术研究[D]. [硕士论文], 华中科技大学, 2018. doi: 10.7666/d.D01541869.

    BIN Fen. Downlink coordinated multiple point transmission in wireless fractal cellular network[D]. [Master dissertation], Huazhong University of Science & Technology, 2018. doi: 10.7666/d.D01541869.
    [78]
    HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [79]
    DING Zhiguo, SCHOBER R, FAN Pingzhi, et al. OTFS-NOMA: An efficient approach for exploiting heterogenous user mobility profiles[J]. IEEE Transactions on Communications, 2019, 67(11): 7950–7965. doi: 10.1109/tcomm.2019.2932934
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (1520) PDF downloads(192) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return