Advanced Search
Volume 44 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHANG Degan, LI Xia, ZHANG Jie, ZHANG Ting, GONG Changle. New Method of Task Offloading in Mobile Edge Computing for Vehicles Based on Simulated Annealing Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3220-3230. doi: 10.11999/JEIT210102
Citation: ZHANG Degan, LI Xia, ZHANG Jie, ZHANG Ting, GONG Changle. New Method of Task Offloading in Mobile Edge Computing for Vehicles Based on Simulated Annealing Mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3220-3230. doi: 10.11999/JEIT210102

New Method of Task Offloading in Mobile Edge Computing for Vehicles Based on Simulated Annealing Mechanism

doi: 10.11999/JEIT210102
Funds:  The National Natural Science Foundation of China (61571328), Tianjin Major Science and Technology Special Projects (15ZXDSGX00050, 16ZXFWGX00010), Tianjin Science and Technology Support Key Projects (17YFZCGX00360), Tianjin Natural Science Foundation (18JCZDJC96800,18JCYBJC19300), Tianjin Science and Technology Innovation and 131 Talent Team (TD13-5025, 2015-23)
  • Received Date: 2021-01-26
  • Rev Recd Date: 2022-07-18
  • Available Online: 2022-07-25
  • Publish Date: 2022-09-19
  • For Internet Of Vehicles(IOV), if all the computing tasks of vehicles are placed on the cloud platform, it can not meet the real-time requirement of information processing. Considering the mobile edge computing technology and task offloading method, the computing tasks are offloaded to the server near the edge of the device. However, in a dense environment, if all the tasks are offloaded, it would also bring large pressure to the edge server. A new method for offloading mobile edge computing tasks for vehicle users based on simulated annealing mechanism is proposed in this paper. By defining the user's task to calculate the offloading utility, comprehensively considering the time consumption and energy consumption, combining with simulated annealing, the utility of system offloading is optimized according to the current road density, and the user's offloading decision is changed. The offloading is executed locally or on the edge server, so that all users in a given environment can get high-quality service with low delay. The simulation results show that the algorithm can reduce the user task computing time and energy consumption at the same time.
  • loading
  • [1]
    MELAOUENE N and ROMADI R. An enhanced routing algorithm using ant colony optimization and VANET infrastructure[J]. MATEC Web of Conferences, 2019, 259: 02009. doi: 10.1051/matecconf/201925902009
    [2]
    BRENNAND C A R L, DE SOUZA A M, MAIA G, et al. An intelligent transportation system for detection and control of congested roads in urban centers[C]. 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 2015: 663–668.
    [3]
    CHEN Jieqiong, MAO Guoqiang, LI Changle, et al. Capacity of cooperative vehicular networks with infrastructure support: Multiuser case[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1546–1560. doi: 10.1109/TVT.2017.2753772
    [4]
    XU Xiaolong, LI Yuancheng, HUANG Tao, et al. An energy-aware computation offloading method for smart edge computing in wireless metropolitan area networks[J]. Journal of Network and Computer Applications, 2019, 133: 75–85. doi: 10.1016/j.jnca.2019.02.008
    [5]
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading[J]. IEEE Vehicular Technology Magazine, 2017, 12(2): 36–44. doi: 10.1109/MVT.2017.2668838
    [6]
    ZHANG Degan, LIU Si, ZHANG Ting, et al. Novel unequal clustering routing protocol considering energy balancing based on network partition & distance for mobile education[J]. Journal of Network and Computer Applications, 2017, 88: 1–9. doi: 10.1016/j.jnca.2017.03.025
    [7]
    ZHANG Degan, ZHANG Ting, and LIU Xiaohuan. Novel self-adaptive routing service algorithm for application in VANET[J]. Applied Intelligence, 2019, 49(5): 1866–1879. doi: 10.1007/s10489-018-1368-y
    [8]
    ZHANG Degan, WANG Xiang, SONG Xiaodong, et al. A novel approach to mapped correlation of ID for RFID anti-collision[J]. IEEE Transactions on Services Computing, 2014, 7(4): 741–748. doi: 10.1109/TSC.2014.2370642
    [9]
    YANG Junnan, DING Ming, MAO Guoqiang, et al. Optimal base station antenna downtilt in downlink cellular networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1779–1791. doi: 10.1109/TWC.2019.2897296
    [10]
    ZHANG Degan, ZHANG Ting, DONG Yue, et al. Novel optimized link state routing protocol based on quantum genetic strategy for mobile learning[J]. Journal of Network and Computer Applications, 2018, 122: 37–49. doi: 10.1016/j.jnca.2018.07.018
    [11]
    ZHANG Degan, GE Hui, ZHANG Ting, et al. New multi-hop clustering algorithm for vehicular ad hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1517–1530. doi: 10.1109/TITS.2018.2853165
    [12]
    ZHANG Ting, ZHANG Degan, YAN Haoran, et al. A new method of data missing estimation with FNN-based tensor heterogeneous ensemble learning for internet of vehicle[J]. Neurocomputing, 2021, 420: 98–110. doi: 10.1016/j.neucom.2020.09.042
    [13]
    CHEN Jieqiong, MAO Guoqiang, LI Changle, et al. A topological approach to secure message dissemination in vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 135–148. doi: 10.1109/TITS.2018.2889746
    [14]
    DUAN Peibo, MAO Guoqiang, LIANG Weifa, et al. A unified spatio-temporal model for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3212–3223. doi: 10.1109/TITS.2018.2873137
    [15]
    SARDELLITTI S, SCUTARI G, and BARBAROSSA S. Distributed joint optimization of radio and computational resources for mobile cloud computing[C]. 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet), Luxembourg, 2014: 211–216.
    [16]
    OUEIS J, STRINATI E C, and BARBAROSSA S. The fog balancing: Load distribution for small cell cloud computing[C]. 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015: 1–6.
    [17]
    WEI Feng, CHEN Sixuan, and ZOU Weixia. A greedy algorithm for task offloading in mobile edge computing system[J]. China Communications, 2018, 15(11): 149–157. doi: 10.1109/CC.2018.8543056
    [18]
    TRAN T X and POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 856–868. doi: 10.1109/TVT.2018.2881191
    [19]
    KAO Y H, KRISHNAMACHARI B, RA M R, et al. Hermes: Latency optimal task assignment for resource-constrained mobile computing[J]. IEEE Transactions on Mobile Computing, 2017, 16(11): 3056–3069. doi: 10.1109/TMC.2017.2679712
    [20]
    ZHANG Jiao, HU Xiping, NING Zhaolong, et al. Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks[J]. IEEE Internet of Things Journal, 2018, 5(4): 2633–2645. doi: 10.1109/JIOT.2017.2786343
    [21]
    WU Xinzhou, SUBRAMANIAN S, GUHA R, et al. Vehicular communications using DSRC: Challenges, enhancements, and evolution[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 399–408. doi: 10.1109/JSAC.2013.SUP.0513036
    [22]
    ZHAO Junhui, CHEN Yan, and GONG Yi. Study of connectivity probability of vehicle-to-vehicle and vehicle-to-infrastructure communication systems[C]. 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016: 1–4.
    [23]
    ZHANG Hongli, ZHANG Qiang, DU Xiaojiang, et al. Toward vehicle-assisted cloud computing for smartphones[J]. IEEE Transactions on Vehicular Technology, 2015, 64(12): 5610–5618. doi: 10.1109/TVT.2015.2480004
    [24]
    RAZA S, WANG Shangguang, AHMED M, et al. Corrigendum to “a survey on vehicular edge computing: Architecture, applications, technical issues, and future directions”[J]. Wireless Communications and Mobile Computing, 2019, 2019: 6104671. doi: 10.1155/2019/6104671
    [25]
    SHAHAPUR S and DASGUPTA S. Future scope for 5G with respect to the Indian telecommunication sector and proposed solution of setting up 5G in rural areas using unmanned aerial vehicles[C]. 2019 6th International Conference on Computing for Sustainable Global Development, New Delhi, India, 2019: 199–204.
    [26]
    KAVITHA A and VELUSAMY R L. Simulated annealing and genetic algorithm-based hybrid approach for energy-aware clustered routing in large-range multi-sink wireless sensor networks[J]. International Journal of Ad Hoc and Ubiquitous Computing, 2020, 35(2): 96–116. doi: 10.1504/IJAHUC.2020.109800
    [27]
    WANG Hui, LI Kangshun, and PEDRYCZ W. A routing algorithm based on simulated annealing algorithm for maximising wireless sensor networks lifetime with a sink node[J]. International Journal of Bio-Inspired Computation, 2020, 15(4): 264–275. doi: 10.1504/IJBIC.2020.108596
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (467) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return