Advanced Search
Volume 43 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Bing LIU, Xuguang LI, Haipeng FU, Kaixue MA. Discussion on the Key Technique of Millimeter-wave Radar Front-end[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1485-1497. doi: 10.11999/JEIT210076
Citation: Bing LIU, Xuguang LI, Haipeng FU, Kaixue MA. Discussion on the Key Technique of Millimeter-wave Radar Front-end[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1485-1497. doi: 10.11999/JEIT210076

Discussion on the Key Technique of Millimeter-wave Radar Front-end

doi: 10.11999/JEIT210076
Funds:  The National Key R&D Program of China (2018YFB2202500)
  • Received Date: 2021-01-21
  • Rev Recd Date: 2021-04-14
  • Available Online: 2021-04-29
  • Publish Date: 2021-06-18
  • The range resolution and maximum working distance of millimeter-wave radar are usually limited by the RF bandwidth and transmitted power. Millimeter-wave radar front-end chip with wide bandwidth, high transmitted power, high sensitivity and high-precision phase control is crucial to millimeter-wave radar system to achieve high performance. The difficulties of millimeter-wave radar chips mainly focus on impedance matching, noise reduction, transmitted power increase, phase control, etc. Therefore, this article discusses and summarizes the key technique to solution the difficulties of millimeter-wave radar front-end chips.
  • loading
  • [1]
    贾海昆, 池保勇. 硅基毫米波雷达芯片研究现状与发展[J]. 电子与信息学报, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666

    JIA Haikun and CHI Baoyong. The status and trends of silicon-based millimeter-wave radar SoCs[J]. Journal of Electronics &Information Technology, 2020, 42(1): 173–190. doi: 10.11999/JEIT190666
    [2]
    LIU Chao, LI Qiang, LI Yihu, et al. A Ka-band single-chip SiGe BiCMOS phased-array transmit/receive front-end[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3667–3677. doi: 10.1109/TMTT.2016.2602837
    [3]
    DING Bowen, YUAN Shengyue, ZHAO Chen, et al. A Ka band FMCW transceiver front-end with 2-GHz bandwidth in 65-nm CMOS[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(2): 212–216. doi: 10.1109/TCSII.2018.2849268
    [4]
    TOWNLEY A, SWIRHUN P, TITZ D, et al. A 94-GHz 4TX–4RX phased-array FMCW radar transceiver with antenna-in-package[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1245–1259. doi: 10.1109/JSSC.2017.2675907
    [5]
    LEE J, LI Yian, HUNG M H, et al. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology[J]. IEEE Journal of Solid-State Circuits, 2010, 45(12): 2746–2756. doi: 10.1109/JSSC.2010.2075250
    [6]
    FUJIBAYASHI T, TAKEDA Y, WANG Weihu, et al. A 76- to 81-GHz multi-channel radar transceiver[J]. IEEE Journal of Solid-State Circuits, 2017, 52(9): 2226–2241. doi: 10.1109/JSSC.2017.2700359
    [7]
    MA Taikun, DENG Wei, CHEN Zipeng, et al. A CMOS 76–81-GHz 2-TX 3-RX FMCW radar transceiver based on mixed-mode PLL chirp generator[J]. IEEE Journal of Solid-State Circuits, 2020, 55(2): 233–248. doi: 10.1109/JSSC.2019.2950184
    [8]
    GINSBURG B P, SUBBURAJ K, SAMALA S, et al. A multimode 76-to-81 GHz automotive radar transceiver with autonomous monitoring[C]. 2018 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2018: 158–160.
    [9]
    ARBABIAN A, CALLENDER S, KANG S, et al. A 90 GHz hybrid switching pulsed-transmitter for medical imaging[J]. IEEE Journal of Solid-State Circuits, 2010, 45(12): 2667–2681. doi: 10.1109/JSSC.2010.2077150
    [10]
    ARBABIAN A, CALLENDER S, KANG S, et al. A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition[J]. IEEE Journal of Solid-State Circuits, 2013, 48(4): 1055–1071. doi: 10.1109/JSSC.2013.2239004
    [11]
    GINSBURG B P, RAMASWAMY S M, RENTALA V, et al. A 160 GHz pulsed radar transceiver in 65 nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2014, 49(4): 984–995. doi: 10.1109/JSSC.2014.2298033
    [12]
    PENG P J, CHEN P N, KAO C, et al. A 94 GHz 3D image radar engine with 4TX/4RX beamforming scan technique in 65 nm CMOS technology[J]. IEEE Journal of Solid-State Circuits, 2015, 50(3): 656–668. doi: 10.1109/JSSC.2014.2385758
    [13]
    VISWESWARAN A, VAESEN K, SINHA S, et al. A 145 GHz FMCW-radar transceiver in 28 nm CMOS[C]. 2019 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2019: 168–170.
    [14]
    MOSTAJERAN A, CATHELIN A, and AFSHARI E. A 170-GHz fully integrated single-chip FMCW imaging radar with 3-D imaging capability[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2721–2734. doi: 10.1109/JSSC.2017.2725963
    [15]
    MOSTAJERAN A, NAGHAVI S M, EMADI M, et al. A high-resolution 220-GHz ultra-wideband fully integrated ISAR imaging system[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(1): 429–442. doi: 10.1109/TMTT.2018.2874666
    [16]
    YI Xiang, WANG Cheng, LU Muting, et al. A terahertz FMCW comb radar in 65 nm CMOS with 100 GHz bandwidth[C]. 2020 IEEE International Solid- State Circuits Conference, San Francisco, USA, 2020: 90–92.
    [17]
    GIANNINI V, GOLDENBERG M, ESHRAGHI A, et al. A 192-virtual-receiver 77/79 GHz GMSK code-domain MIMO radar system-on-chip[C]. 2019 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2019: 164–166.
    [18]
    OH J, JANG J, KIM C Y, et al. A W-band 4-GHz bandwidth phase-modulated pulse compression radar transmitter in 65-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 2609–2618. doi: 10.1109/TMTT.2015.2442992
    [19]
    GUERMANDI D, SHI Qixian, DEWILDE A, et al. A 79-GHz 2×2 MIMO PMCW radar SoC in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2613–2626. doi: 10.1109/JSSC.2017.2723499
    [20]
    LEE W, DINC T, and VALDES-GARCIA A. Multi-mode 60-GHz radar transmitter SoC in 45-nm SOI CMOS[J]. IEEE Journal of Solid-State Circuits, 2020, 55(5): 1187–1198. doi: 10.1109/JSSC.2020.2964150
    [21]
    SKOLNIK W I. Introduction to Radar Systems[M]. 3rd ed. New York: McGraw-Hill, 2002: 4.
    [22]
    FENG Guangyin, BOON C C, MENG Fanyi, et al. An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 134–136. doi: 10.1109/LMWC.2016.2517071
    [23]
    JANG T H, JUNG K P, KANG J S, et al. 120-GHz 8-stage broadband amplifier with quantitative stagger tuning technique[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(3): 785–796. doi: 10.1109/TCSI.2019.2958366
    [24]
    FRITSCHE D, TRETTER G, CARTA C, et al. Millimeter-wave low-noise amplifier design in 28-nm low-power digital CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(6): 1910–1922. doi: 10.1109/TMTT.2015.2427794
    [25]
    LIU Gang & SCHUMACHER H. Broadband millimeter-wave LNAs (47–77 GHz and 70–140 GHz) using a T-type matching topology[J]. IEEE Journal of Solid-State Circuits, 2013, 48(9): 2022–2029. doi: 10.1109/JSSC.2013.2265500
    [26]
    TURKMEN E, BURAK A, GUNER A, et al. A SiGe HBT D-band LNA with butterworth response and noise reduction technique[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 524–526. doi: 10.1109/LMWC.2018.2831450
    [27]
    KARAKUZULU A, EISSA M H, KISSINGER D, et al. A broadband 110–170-GHz stagger-tuned power amplifier with 13.5-dBm Psat in 130-nm SiGe[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(1): 56–59. doi: 10.1109/LMWC.2020.3036937
    [28]
    SANDSTROM D, VARONEN M, KARKKAINEN M, et al. W-band CMOS amplifiers achieving +10 dBm saturated output power and 7.5 dB NF[J]. IEEE Journal of Solid-State Circuits, 2009, 44(12): 3403–3409. doi: 10.1109/JSSC.2009.2032274
    [29]
    HU Jianquan, MA Kaixue, MOU Shouxian, et al. A seven-octave broadband LNA MMIC using bandwidth extension techniques and improved active load[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(10): 3150–3161. doi: 10.1109/TCSI.2018.2803299
    [30]
    SHEKHAR S, WALLING J S, and ALLSTOT D J. Bandwidth extension techniques for CMOS amplifiers[J]. IEEE Journal of Solid-State Circuits, 2006, 41(11): 2424–2439. doi: 10.1109/JSSC.2006.883336
    [31]
    WANG Keping and ZHANG Hao. A 22-to-47 GHz 2-stage LNA with 22.2 dB peak gain by using coupled L-Type interstage matching inductors[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 4607–4617. doi: 10.1109/TCSI.2020.3019335
    [32]
    JIN Junde and HSU S S H. A miniaturized 70-GHz broadband amplifier in 0.13-μm CMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 3086–3092. doi: 10.1109/TMTT.2008.2007089
    [33]
    CASSAN D J and LONG J R. A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS[J]. IEEE Journal of Solid-State Circuits, 2003, 38(3): 427–435. doi: 10.1109/JSSC.2002.808284
    [34]
    CHANG Poyu, SU S H, HSU S S H, et al. An ultra-low-power transformer-feedback 60 GHz low-noise amplifier in 90 nm CMOS[J]. IEEE Microwave and Wireless Components Letters, 2012, 22(4): 197–199. doi: 10.1109/LMWC.2012.2187883
    [35]
    YEH H C, CHIONG C C, ALOUI S, et al. Analysis and design of millimeter-wave low-voltage CMOS cascode LNA with magnetic coupled technique[J]. IEEE transactions on Microwave Theory and Techniques, 2012, 60(12): 4066–4079. doi: 10.1109/TMTT.2012.2224365
    [36]
    YU Yiming, LIU Huihua, WU Yunqiu, et al. A 54.4–90 GHz low-noise amplifier in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(11): 2892–2904. doi: 10.1109/JSSC.2017.2727040
    [37]
    FENG Guangyin, BOON C C, MENG Fanyi, et al. Pole-converging intrastage bandwidth extension technique for wideband amplifiers[J]. IEEE Journal of Solid-State Circuits, 2017, 52(3): 769–780. doi: 10.1109/JSSC.2016.2641459
    [38]
    KONG S, LEE H D, JANG S, et al. A 28-GHz CMOS LNA with stability-enhanced gm-boosting technique using transformers[C]. 2019 IEEE Radio Frequency Integrated Circuits Symposium, Boston, USA, 2019: 7–10.
    [39]
    GAO Li, MA Qian, and REBEIZ G M. A 4.7 mW W-band LNA with 4.2 dB NF and 12 dB gain using drain to gate feedback in 45 nm CMOS RFSOI technology[C]. 2018 IEEE Radio Frequency Integrated Circuits Symposium, Philadelphia, USA, 2018: 280–283.
    [40]
    AOKI I, KEE S D, RUTLEDGE D B, et al. Fully integrated CMOS power amplifier design using the distributed active-transformer architecture[J]. IEEE Journal of Solid-State Circuits, 2002, 37(3): 371–383. doi: 10.1109/4.987090
    [41]
    BASSI M, ZHAO Junlei, BEVILACQUA A, et al. A 40–67 GHz power amplifier with 13 dBm PSAT and 16% PAE in 28 nm CMOS LP[J]. IEEE Journal of Solid-State Circuits, 2015, 50(7): 1618–1628. doi: 10.1109/JSSC.2015.2409295
    [42]
    YE Wanxin, MA Kaixue, YEO K S, et al. A 65 nm CMOS power amplifier with peak PAE above 18.9% from 57 to 66 GHz using synthesized transformer-based matching network[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(10): 2533–2543. doi: 10.1109/TCSI.2015.2476315
    [43]
    BHAGAVATULA V, ZHANG Tong, SUVARNA A R, et al. An ultra-wideband IF millimeter-wave receiver with a 20 GHz channel bandwidth using gain-equalized transformers[J]. IEEE Journal of Solid-State Circuits, 2016, 51(2): 323–331. doi: 10.1109/JSSC.2015.2504411
    [44]
    VIGILANTE M and REYNAERT P. On the design of wideband transformer-based fourth order matching networks for E-band receivers in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(8): 2071–2082. doi: 10.1109/JSSC.2017.2690864
    [45]
    JIA Haikun, PRAWOTO C C, CHI Baoyong, et al. A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(9): 2657–2668. doi: 10.1109/TCSI.2018.2799983
    [46]
    HU Song, WANG Fei, and WANG Hua. A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications[J]. IEEE Journal of Solid-State Circuits, 2019, 54(6): 1586–1599. doi: 10.1109/JSSC.2019.2902307
    [47]
    LI T W, HUANG Minyu, and WANG Hua. Millimeter-wave continuous-mode power amplifier for 5G MIMO applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(7): 3088–3098. doi: 10.1109/TMTT.2019.2906592
    [48]
    MONDAL S and PARAMESH J. A reconfigurable 28-/37-GHz MMSE-adaptive hybrid-beamforming receiver for carrier aggregation and multi-standard MIMO communication[J]. IEEE Journal of Solid-State Circuits, 2019, 54(5): 1391–1406. doi: 10.1109/JSSC.2018.2888844
    [49]
    SINGH R, MONDAL S, and PARAMESH J. A millimeter-wave receiver using a wideband low-noise amplifier with one-port coupled resonator loads[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(9): 3794–3803. doi: 10.1109/TMTT.2020.2985676
    [50]
    HUANG Minyu, CHI Taiyun, LI Sensen, et al. A 24.5–43.5-GHz ultra-compact CMOS receiver front end with calibration-free instantaneous full-band image rejection for multiband 5G massive MIMO[J]. IEEE Journal of Solid-State Circuits, 2020, 55(5): 1177–1186. doi: 10.1109/JSSC.2019.2959495
    [51]
    FRITSCHE D, WOLF R, and ELLINGER F. Analysis and design of a stacked power amplifier with very high bandwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(10): 3223–3231. doi: 10.1109/TMTT.2012.2209439
    [52]
    DATTA K and HASHEMI H. High-breakdown, high-fmax multiport stacked-transistor topologies for the W-band power amplifiers[J]. IEEE Journal of Solid-State Circuits, 2017, 52(5): 1305–1319. doi: 10.1109/JSSC.2016.2641464
    [53]
    WU Chenwei, LIN Y H, HSIAO Y H, et al. Design of a 60-GHz high-output power stacked- FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(10): 4595–4607. doi: 10.1109/TMTT.2018.2859980
    [54]
    DABAG H T, HANAFI B, GOLCUK F, et al. Analysis and design of stacked-FET millimeter-wave power amplifiers[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(4): 1543–1556. doi: 10.1109/TMTT.2013.2247698
    [55]
    JAYAMON J A, BUCKWALTER J F, and ASBECK P M. Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers[J]. IEEE Journal of Solid-State Circuits, 2016, 51(9): 2027–2039. doi: 10.1109/JSSC.2016.2592686
    [56]
    WANG Weibo, GUO Fangjin, CHEN Tangsheng, et al. A W-band power amplifier with distributed common-source GaN HEMT and 4-way Wilkinson-Lange combiner achieving 6W output power and 18% PAE at 95 GHz[C]. 2020 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2020: 376–378.
    [57]
    LAW C Y and PHAM A V. A high-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS[C]. 2010 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2010: 426–427.
    [58]
    TAI Wei, CARLEY L R, and RICKETTS D S. A 0.7W fully integrated 42 GHz power amplifier with 10% PAE in 0.13µm SiGe BiCMOS[C]. 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, USA, 2013: 142–143.
    [59]
    ZHAO Dixian and REYNAERT P. A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10): 2323–2337. doi: 10.1109/JSSC.2013.2275662
    [60]
    LIN H C and REBEIZ G M. A 70–80-GHz SiGe amplifier with peak output power of 27.3 dBm[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2039–2049. doi: 10.1109/TMTT.2016.2574863
    [61]
    NGUYEN H T, JUNG D, and WANG Hua. A 60 GHz CMOS power amplifier with cascaded asymmetric distributed-active-transformer achieving watt-level peak output power with 20.8% PAE and supporting 2Gsym/s 64-QAM modulation[C]. 2019 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2019: 90–92.
    [62]
    ZHAO Dixian and REYNAERT P. 14.1 A 0.9 V 20.9 dBm 22.3%-PAE E-band power amplifier with broadband parallel-series power combiner in 40 nm CMOS[C]. 2014 IEEE International Solid-State Circuits Conference, San Francisco, USA, 2014: 248–249.
    [63]
    DASGUPTA K, DANESHGAR S, THAKKAR C, et al. A 26 dBm 39 GHz power amplifier with 26.6% PAE for 5G applications in 28 nm bulk CMOS[C]. 2019 IEEE Radio Frequency Integrated Circuits Symposium, Boston, USA, 2019: 235–238.
    [64]
    MENG Fanyi, MA Kaixue, YEO K S, et al. A 57-to-64-GHz 0.094-mm2 5-bit passive phase shifter in 65-nm CMOS[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, 24(5): 1917–1925. doi: 10.1109/TVLSI.2015.2469158
    [65]
    TSAI J H, TUNG Y L, and LIN Yuhui. A 27–42-GHz low phase error 5-bit passive phase shifter in 65-nm CMOS technology[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(9): 900–903. doi: 10.1109/LMWC.2020.3012459
    [66]
    MENG Fanyi, MA Kaixue, YEO K S, et al. Miniaturized 3-bit phase shifter for 60 GHz phased-array in 65 nm CMOS technology[J]. IEEE microwave and Wireless Components Letters, 2013, 24(1): 50–52. doi: 10.1109/LMWC.2013.2288266
    [67]
    QUAN Xing, YI Xiang, BOON C C, et al. A 52–57 GHz 6-bit phase shifter with hybrid of passive and active structures[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(3): 236–238. doi: 10.1109/LMWC.2018.2802706
    [68]
    LI T W and WANG Hua. A millimeter-wave fully integrated passive reflection-type phase shifter with transformer-based multi-resonance loads for 360° phase shifting[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(4): 1406–1419. doi: 10.1109/TCSI.2017.2748078
    [69]
    GU Peng and ZHAO Dixian. Geometric analysis and systematic design of a reflective-type phase shifter with full 360° phase shift range and minimal loss variation[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(10): 4156–4166. doi: 10.1109/TMTT.2019.2933213
    [70]
    LI Yongjie, DUAN Zongming, LÜ Wei, et al. A 32-40 GHz 7-bit CMOS phase shifter with 0.38 dB/1.6° RMS magnitude/phase errors for phased array systems[C]. 2020 IEEE Radio Frequency Integrated Circuits Symposium, Los Angeles, USA, 2020: 319–322.
    [71]
    KOH K J and REBEIZ G M. 0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11): 2535–2546. doi: 10.1109/JSSC.2007.907225
    [72]
    ZHU Wei, LÜ Wei, LIAO Bingbing, et al. A 21 to 30-GHz merged digital-controlled high resolution phase shifter-programmable gain amplifier with orthogonal phase and gain control for 5-G phase array application[C]. 2019 IEEE Radio Frequency Integrated Circuits Symposium, Boston, USA, 2019: 67–70.
    [73]
    YANG Bingzheng, QIAN H J, ZHOU Jie, et al. A 90− 98 GHz 2× 2 phased-array transmitter with high resolution phase control and digital gain compensation[C]. 2019 IEEE MTT-S International Microwave Symposium, Boston, USA, 2019: 642–645.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (2075) PDF downloads(311) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return